深度学习 Day16——P5运动鞋识别

2023-12-16 12:15

本文主要是介绍深度学习 Day16——P5运动鞋识别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍖 原作者:K同学啊 | 接辅导、项目定制

文章目录

  • 前言
  • 1 我的环境
  • 2 代码实现与执行结果
    • 2.1 前期准备
      • 2.1.1 引入库
      • 2.1.2 设置GPU(如果设备上支持GPU就使用GPU,否则使用CPU)
      • 2.1.3 导入数据
      • 2.1.4 可视化数据
      • 2.1.4 图像数据变换
      • 2.1.4 加载数据
      • 2.1.4 查看数据
    • 2.2 构建CNN网络模型
    • 2.3 训练模型
      • 2.3.1 设置超参数
      • 2.3.2 编写训练函数
      • 2.3.3 编写测试函数
      • 2.3.4 正式训练
    • 2.4 结果可视化
    • 2.4 指定图片进行预测
    • 2.6 保存并加载模型
  • 3 知识点详解
    • 3.1 torch动态学习率
      • 3.1.1 torch.optim.lr_scheduler.StepLR
      • 3.1.2 lr_scheduler.LambdaLR
      • 3.1.3 lr_scheduler.MultiStepLR
    • 3.2 拔高尝试
  • 总结


前言

本文将采用pytorch框架创建CNN网络,实现运动鞋识别。讲述实现代码与执行结果,并浅谈涉及知识点。
关键字:torch动态学习率

1 我的环境

  • 电脑系统:Windows 11
  • 语言环境:python 3.8.6
  • 编译器:pycharm2020.2.3
  • 深度学习环境:
    torch == 1.9.1+cu111
    torchvision == 0.10.1+cu111
  • 显卡:NVIDIA GeForce RTX 4070

2 代码实现与执行结果

2.1 前期准备

2.1.1 引入库

import torch
import torch.nn as nn
from torchvision import transforms, datasets
import time
from pathlib import Path
from PIL import Image
from torchinfo import summary
import torch.nn.functional as F
import matplotlib.pyplot as pltplt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
plt.rcParams['figure.dpi'] = 100  # 分辨率
import warningswarnings.filterwarnings('ignore')  # 忽略一些warning内容,无需打印

2.1.2 设置GPU(如果设备上支持GPU就使用GPU,否则使用CPU)

"""前期准备-设置GPU"""
# 如果设备上支持GPU就使用GPU,否则使用CPUdevice = torch.device("cuda" if torch.cuda.is_available() else "cpu")print("Using {} device".format(device))

输出

Using cuda device

2.1.3 导入数据

'''前期工作-导入数据'''
data_dir = r"D:\DeepLearning\data\monkeypox_recognition"
data_dir = Path(data_dir)data_paths = list(data_dir.glob('./train/*'))classeNames = [str(path).split("\\")[-1] for path in data_paths]print(classeNames)

输出

['adidas', 'nike']

2.1.4 可视化数据

'''前期工作-可视化数据'''
subfolder = Path(data_dir)/"train"/"nike"
image_files = list(p.resolve() for p in subfolder.glob('*') if p.suffix in [".jpg", ".png", ".jpeg"])
plt.figure(figsize=(10, 6))
for i in range(len(image_files[:12])):image_file = image_files[i]ax = plt.subplot(3, 4, i + 1)img = Image.open(str(image_file))plt.imshow(img)plt.axis("off")
# 显示图片
plt.tight_layout()
plt.show()

在这里插入图片描述

2.1.4 图像数据变换

'''前期工作-图像数据变换'''# 关于transforms.Compose的更多介绍可以参考:https://blog.csdn.net/qq_38251616/article/details/124878863train_transforms = transforms.Compose([transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸# transforms.RandomHorizontalFlip(), # 随机水平翻转transforms.ToTensor(),  # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间transforms.Normalize(  # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。])test_transform = transforms.Compose([transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸transforms.ToTensor(),  # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间transforms.Normalize(  # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。])train_dataset = datasets.ImageFolder(Path(data_dir)/"train", transform=train_transforms)test_dataset = datasets.ImageFolder(Path(data_dir)/"test", transform=train_transforms)print(train_dataset.class_to_idx)

输出

{'adidas': 0, 'nike': 1}

2.1.4 加载数据

'''前期工作-加载数据'''
batch_size = 32train_dl = torch.utils.data.DataLoader(train_dataset,batch_size=batch_size,shuffle=True,num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,batch_size=batch_size,shuffle=True,num_workers=1)

2.1.4 查看数据

'''前期工作-查看数据'''
for X, y in test_dl:print("Shape of X [N, C, H, W]: ", X.shape)print("Shape of y: ", y.shape, y.dtype)break

输出

Shape of X [N, C, H, W]:  torch.Size([32, 3, 224, 224])
Shape of y:  torch.Size([32]) torch.int64

2.2 构建CNN网络模型

在这里插入图片描述

"""构建CNN网络"""
class Network_bn(nn.Module):def __init__(self):super(Network_bn, self).__init__()"""nn.Conv2d()函数:第一个参数(in_channels)是输入的channel数量第二个参数(out_channels)是输出的channel数量第三个参数(kernel_size)是卷积核大小第四个参数(stride)是步长,默认为1第五个参数(padding)是填充大小,默认为0"""self.conv1 = nn.Conv2d(in_channels=3, out_channels=12, kernel_size=5, stride=1, padding=0)self.bn1 = nn.BatchNorm2d(12)self.conv2 = nn.Conv2d(in_channels=12, out_channels=12, kernel_size=5, stride=1, padding=0)self.bn2 = nn.BatchNorm2d(12)self.pool = nn.MaxPool2d(2, 2)self.conv4 = nn.Conv2d(in_channels=12, out_channels=24, kernel_size=5, stride=1, padding=0)self.bn4 = nn.BatchNorm2d(24)self.conv5 = nn.Conv2d(in_channels=24, out_channels=24, kernel_size=5, stride=1, padding=0)self.bn5 = nn.BatchNorm2d(24)self.fc1 = nn.Linear(24 * 50 * 50, len(classeNames))def forward(self, x):x = F.relu(self.bn1(self.conv1(x)))x = F.relu(self.bn2(self.conv2(x)))x = self.pool(x)x = F.relu(self.bn4(self.conv4(x)))x = F.relu(self.bn5(self.conv5(x)))x = self.pool(x)x = x.view(-1, 24 * 50 * 50)x = self.fc1(x)return xmodel = Network_bn().to(device)
print(model)   

输出

Network_bn((conv1): Conv2d(3, 12, kernel_size=(5, 5), stride=(1, 1))(bn1): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(12, 12, kernel_size=(5, 5), stride=(1, 1))(bn2): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(conv4): Conv2d(12, 24, kernel_size=(5, 5), stride=(1, 1))(bn4): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv5): Conv2d(24, 24, kernel_size=(5, 5), stride=(1, 1))(bn5): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(fc1): Linear(in_features=60000, out_features=2, bias=True)
)

2.3 训练模型

2.3.1 设置超参数

"""训练模型--设置超参数"""
loss_fn = nn.CrossEntropyLoss()  # 创建损失函数,计算实际输出和真实相差多少,交叉熵损失函数,事实上,它就是做图片分类任务时常用的损失函数
learn_rate = 1e-4  # 学习率
optimizer1 = torch.optim.SGD(model.parameters(), lr=learn_rate)# 作用是定义优化器,用来训练时候优化模型参数;其中,SGD表示随机梯度下降,用于控制实际输出y与真实y之间的相差有多大
optimizer2 = torch.optim.Adam(model.parameters(), lr=learn_rate)
#测试集acc 84.2%
lr_opt = optimizer1
model_opt = optimizer1

2.3.2 编写训练函数

"""训练模型--编写训练函数"""
# 训练循环
def train(dataloader, model, loss_fn, optimizer):size = len(dataloader.dataset)  # 训练集的大小,一共60000张图片num_batches = len(dataloader)  # 批次数目,1875(60000/32)train_loss, train_acc = 0, 0  # 初始化训练损失和正确率for X, y in dataloader:  # 加载数据加载器,得到里面的 X(图片数据)和 y(真实标签)X, y = X.to(device), y.to(device) # 用于将数据存到显卡# 计算预测误差pred = model(X)  # 网络输出loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失# 反向传播optimizer.zero_grad()  # 清空过往梯度loss.backward()  # 反向传播,计算当前梯度optimizer.step()  # 根据梯度更新网络参数# 记录acc与losstrain_acc += (pred.argmax(1) == y).type(torch.float).sum().item()train_loss += loss.item()train_acc /= sizetrain_loss /= num_batchesreturn train_acc, train_loss

2.3.3 编写测试函数

"""训练模型--编写测试函数"""
# 测试函数和训练函数大致相同,但是由于不进行梯度下降对网络权重进行更新,所以不需要传入优化器
def test(dataloader, model, loss_fn):size = len(dataloader.dataset)  # 测试集的大小,一共10000张图片num_batches = len(dataloader)  # 批次数目,313(10000/32=312.5,向上取整)test_loss, test_acc = 0, 0# 当不进行训练时,停止梯度更新,节省计算内存消耗with torch.no_grad(): # 测试时模型参数不用更新,所以 no_grad,整个模型参数正向推就ok,不反向更新参数for imgs, target in dataloader:imgs, target = imgs.to(device), target.to(device)# 计算losstarget_pred = model(imgs)loss = loss_fn(target_pred, target)test_loss += loss.item()test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()#统计预测正确的个数test_acc /= sizetest_loss /= num_batchesreturn test_acc, test_loss

2.3.4 正式训练

 """训练模型--正式训练"""epochs = 40train_loss = []train_acc = []test_loss = []test_acc = []best_test_acc=0PATH = './model.pth'  # 保存的参数文件名for epoch in range(epochs):milliseconds_t1 = int(time.time() * 1000)# 更新学习率(使用自定义学习率时使用)adjust_learning_rate(lr_opt, epoch, learn_rate)model.train()epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, model_opt)# scheduler.step() # 更新学习率(调用官方动态学习率接口时使用)model.eval()epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)train_acc.append(epoch_train_acc)train_loss.append(epoch_train_loss)test_acc.append(epoch_test_acc)test_loss.append(epoch_test_loss)# 获取当前的学习率lr = lr_opt.state_dict()['param_groups'][0]['lr']milliseconds_t2 = int(time.time() * 1000)template = ('Epoch:{:2d}, duration:{}ms, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}, Lr:{:.2E}')if best_test_acc < epoch_test_acc:best_test_acc = epoch_test_acc# 模型保存torch.save(model.state_dict(), PATH)template = ('Epoch:{:2d}, duration:{}ms, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}, Lr:{:.2E},save model.pth')print(template.format(epoch + 1, milliseconds_t2-milliseconds_t1, epoch_train_acc * 100, epoch_train_loss, epoch_test_acc * 100, epoch_test_loss, lr))print('Done')

输出

Epoch: 1, duration:5323ms, Train_acc:52.2%, Train_loss:0.745, Test_acc:50.0%,Test_loss:0.700, Lr:1.00E-04,save model.pth
Epoch: 2, duration:3125ms, Train_acc:62.9%, Train_loss:0.651, Test_acc:57.9%,Test_loss:0.667, Lr:1.00E-04,save model.pth
Epoch: 3, duration:3130ms, Train_acc:66.9%, Train_loss:0.614, Test_acc:67.1%,Test_loss:0.584, Lr:9.20E-05,save model.pth
Epoch: 4, duration:3136ms, Train_acc:70.5%, Train_loss:0.567, Test_acc:72.4%,Test_loss:0.568, Lr:9.20E-05,save model.pth
Epoch: 5, duration:3346ms, Train_acc:76.1%, Train_loss:0.531, Test_acc:72.4%,Test_loss:0.537, Lr:8.46E-05
Epoch: 6, duration:3087ms, Train_acc:77.5%, Train_loss:0.510, Test_acc:72.4%,Test_loss:0.531, Lr:8.46E-05
Epoch: 7, duration:3215ms, Train_acc:77.7%, Train_loss:0.492, Test_acc:78.9%,Test_loss:0.511, Lr:7.79E-05,save model.pth
Epoch: 8, duration:3520ms, Train_acc:82.3%, Train_loss:0.467, Test_acc:77.6%,Test_loss:0.504, Lr:7.79E-05
Epoch: 9, duration:3662ms, Train_acc:83.1%, Train_loss:0.442, Test_acc:81.6%,Test_loss:0.494, Lr:7.16E-05,save model.pth
Epoch:10, duration:3410ms, Train_acc:85.7%, Train_loss:0.427, Test_acc:80.3%,Test_loss:0.464, Lr:7.16E-05
Epoch:11, duration:3486ms, Train_acc:86.3%, Train_loss:0.413, Test_acc:81.6%,Test_loss:0.469, Lr:6.59E-05
Epoch:12, duration:3356ms, Train_acc:87.6%, Train_loss:0.394, Test_acc:78.9%,Test_loss:0.452, Lr:6.59E-05
Epoch:13, duration:3453ms, Train_acc:87.6%, Train_loss:0.391, Test_acc:81.6%,Test_loss:0.494, Lr:6.06E-05
Epoch:14, duration:3226ms, Train_acc:87.8%, Train_loss:0.385, Test_acc:80.3%,Test_loss:0.450, Lr:6.06E-05
Epoch:15, duration:3290ms, Train_acc:89.0%, Train_loss:0.368, Test_acc:82.9%,Test_loss:0.486, Lr:5.58E-05,save model.pth
Epoch:16, duration:3247ms, Train_acc:90.4%, Train_loss:0.359, Test_acc:81.6%,Test_loss:0.443, Lr:5.58E-05
Epoch:17, duration:3195ms, Train_acc:90.6%, Train_loss:0.358, Test_acc:81.6%,Test_loss:0.452, Lr:5.13E-05
Epoch:18, duration:3294ms, Train_acc:90.6%, Train_loss:0.342, Test_acc:82.9%,Test_loss:0.436, Lr:5.13E-05
Epoch:19, duration:3305ms, Train_acc:91.2%, Train_loss:0.338, Test_acc:81.6%,Test_loss:0.452, Lr:4.72E-05
Epoch:20, duration:3241ms, Train_acc:91.8%, Train_loss:0.332, Test_acc:81.6%,Test_loss:0.418, Lr:4.72E-05
Epoch:21, duration:3371ms, Train_acc:93.0%, Train_loss:0.320, Test_acc:81.6%,Test_loss:0.459, Lr:4.34E-05
Epoch:22, duration:3279ms, Train_acc:92.8%, Train_loss:0.317, Test_acc:81.6%,Test_loss:0.475, Lr:4.34E-05
Epoch:23, duration:3279ms, Train_acc:93.4%, Train_loss:0.310, Test_acc:82.9%,Test_loss:0.438, Lr:4.00E-05
Epoch:24, duration:3225ms, Train_acc:93.0%, Train_loss:0.313, Test_acc:81.6%,Test_loss:0.437, Lr:4.00E-05
Epoch:25, duration:3293ms, Train_acc:94.0%, Train_loss:0.304, Test_acc:81.6%,Test_loss:0.439, Lr:3.68E-05
Epoch:26, duration:3273ms, Train_acc:94.0%, Train_loss:0.297, Test_acc:81.6%,Test_loss:0.414, Lr:3.68E-05
Epoch:27, duration:3249ms, Train_acc:94.2%, Train_loss:0.296, Test_acc:80.3%,Test_loss:0.413, Lr:3.38E-05
Epoch:28, duration:3266ms, Train_acc:94.8%, Train_loss:0.288, Test_acc:84.2%,Test_loss:0.425, Lr:3.38E-05,save model.pth
Epoch:29, duration:3248ms, Train_acc:94.4%, Train_loss:0.288, Test_acc:81.6%,Test_loss:0.400, Lr:3.11E-05
Epoch:30, duration:3243ms, Train_acc:94.6%, Train_loss:0.291, Test_acc:81.6%,Test_loss:0.445, Lr:3.11E-05
Epoch:31, duration:3250ms, Train_acc:96.4%, Train_loss:0.278, Test_acc:81.6%,Test_loss:0.465, Lr:2.86E-05
Epoch:32, duration:3193ms, Train_acc:95.2%, Train_loss:0.275, Test_acc:81.6%,Test_loss:0.438, Lr:2.86E-05
Epoch:33, duration:3283ms, Train_acc:95.2%, Train_loss:0.270, Test_acc:81.6%,Test_loss:0.402, Lr:2.63E-05
Epoch:34, duration:3542ms, Train_acc:94.8%, Train_loss:0.280, Test_acc:81.6%,Test_loss:0.407, Lr:2.63E-05
Epoch:35, duration:3592ms, Train_acc:95.8%, Train_loss:0.269, Test_acc:81.6%,Test_loss:0.442, Lr:2.42E-05
Epoch:36, duration:3592ms, Train_acc:95.4%, Train_loss:0.267, Test_acc:80.3%,Test_loss:0.413, Lr:2.42E-05
Epoch:37, duration:3588ms, Train_acc:95.0%, Train_loss:0.265, Test_acc:81.6%,Test_loss:0.432, Lr:2.23E-05
Epoch:38, duration:3736ms, Train_acc:95.0%, Train_loss:0.267, Test_acc:81.6%,Test_loss:0.438, Lr:2.23E-05
Epoch:39, duration:3431ms, Train_acc:95.2%, Train_loss:0.265, Test_acc:82.9%,Test_loss:0.400, Lr:2.05E-05
Epoch:40, duration:3417ms, Train_acc:95.8%, Train_loss:0.270, Test_acc:81.6%,Test_loss:0.379, Lr:2.05E-05
Done

2.4 结果可视化

"""训练模型--结果可视化"""
epochs_range = range(epochs)plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

在这里插入图片描述

2.4 指定图片进行预测

def predict_one_image(image_path, model, transform, classes):test_img = Image.open(image_path).convert('RGB')plt.imshow(test_img)  # 展示预测的图片plt.show()test_img = transform(test_img)img = test_img.to(device).unsqueeze(0)model.eval()output = model(img)_, pred = torch.max(output, 1)pred_class = classes[pred]print(f'预测结果是:{pred_class}')"""指定图片进行预测"""classes = list(total_data.class_to_idx)
# 预测训练集中的某张照片
predict_one_image(image_path=str(Path(data_dir)/"test/adidas/1.jpg"),model=model,transform=train_transforms,classes=classes)

如果使用效果最好的模型,就先加载保存好的模型,再调用预测代码

   # 将参数加载到model当中model.load_state_dict(torch.load(PATH, map_location=device))

输出

预测结果是:adidas

在这里插入图片描述

2.6 保存并加载模型

"""保存并加载模型"""
# 模型保存
PATH = './model.pth'  # 保存的参数文件名
torch.save(model.state_dict(), PATH)# 将参数加载到model当中
model.load_state_dict(torch.load(PATH, map_location=device))

3 知识点详解

3.1 torch动态学习率

3.1.1 torch.optim.lr_scheduler.StepLR

函数原型:

torch.optim.lr_scheduler.StepLR(optimizer, step_size, gamma=0.1, last_epoch=-1)

关键参数详解:

  • optimizer(Optimizer):是之前定义好的需要优化的优化器的实例名
  • step_size(int):是学习率衰减的周期,每经过每个epoch,做一次学习率decay
  • gamma(float):学习率衰减的乘法因子。Default:0.1

用法示例:

optimizer = torch.optim.SGD(net.parameters(), lr=0.001 )
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.1)

3.1.2 lr_scheduler.LambdaLR

根据自己定义的函数更新学习率。
函数原型:

torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda, last_epoch=-1, verbose=False)

关键参数详解:

  • optimizer(Optimizer):是之前定义好的需要优化的优化器的实例名
  • lr_lambda(function):更新学习率的函数
    用法示例:
lambda1 = lambda epoch: (0.92 ** (epoch // 2) # 第二组参数的调整方法
optimizer = torch.optim.SGD(model.parameters(), lr=learn_rate)
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda1) #选定调整方法

3.1.3 lr_scheduler.MultiStepLR

在特定的 epoch 中调整学习率
函数原型:

torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones, gamma=0.1, last_epoch=-1, verbose=False)

关键参数详解:

  • optimizer(Optimizer):是之前定义好的需要优化的优化器的实例名
  • milestones(list):是一个关于epoch数值的list,表示在达到哪个epoch范围内开始变化,必须是升序排列
  • gamma(float):学习率衰减的乘法因子。Default:0.1
    用法示例:
optimizer = torch.optim.SGD(net.parameters(), lr=0.001 )
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[2,6,15], #调整学习率的epoch数gamma=0.1)

更多的官方动态学习率设置方式可参考:https://pytorch.org/docs/stable/optim.html
👉调用官方接口示例:

model = [Parameter(torch.randn(2, 2, requires_grad=True))]
optimizer = SGD(model, 0.1)
scheduler = ExponentialLR(optimizer, gamma=0.9)for epoch in range(20):for input, target in dataset:optimizer.zero_grad()output = model(input)loss = loss_fn(output, target)loss.backward()optimizer.step()scheduler.step()

3.2 拔高尝试

尝试变更dropout失活比例为0.5,测试集acc提升至86.8%,实际上也不能确定是因为变更比例导致的效果提升,因为每次运行效果都有不同,有好有坏。

Epoch: 1, duration:4820ms, Train_acc:53.6%, Train_loss:1.133, Test_acc:52.6%,Test_loss:0.712, Lr:1.00E-04,save model.pth
Epoch: 2, duration:3271ms, Train_acc:73.5%, Train_loss:0.547, Test_acc:59.2%,Test_loss:0.697, Lr:1.00E-04,save model.pth
Epoch: 3, duration:3566ms, Train_acc:81.5%, Train_loss:0.396, Test_acc:77.6%,Test_loss:0.485, Lr:9.20E-05,save model.pth
Epoch: 4, duration:3309ms, Train_acc:89.4%, Train_loss:0.287, Test_acc:77.6%,Test_loss:0.470, Lr:9.20E-05
Epoch: 5, duration:3411ms, Train_acc:94.2%, Train_loss:0.219, Test_acc:82.9%,Test_loss:0.418, Lr:8.46E-05,save model.pth
Epoch: 6, duration:3239ms, Train_acc:98.2%, Train_loss:0.172, Test_acc:81.6%,Test_loss:0.385, Lr:8.46E-05
Epoch: 7, duration:3282ms, Train_acc:98.8%, Train_loss:0.127, Test_acc:85.5%,Test_loss:0.374, Lr:7.79E-05,save model.pth
Epoch: 8, duration:3277ms, Train_acc:99.2%, Train_loss:0.115, Test_acc:82.9%,Test_loss:0.332, Lr:7.79E-05
Epoch: 9, duration:3440ms, Train_acc:99.6%, Train_loss:0.091, Test_acc:86.8%,Test_loss:0.356, Lr:7.16E-05,save model.pth
Epoch:10, duration:3570ms, Train_acc:100.0%, Train_loss:0.078, Test_acc:81.6%,Test_loss:0.411, Lr:7.16E-05
Epoch:11, duration:3418ms, Train_acc:99.6%, Train_loss:0.072, Test_acc:84.2%,Test_loss:0.370, Lr:6.59E-05
Epoch:12, duration:3291ms, Train_acc:100.0%, Train_loss:0.064, Test_acc:85.5%,Test_loss:0.339, Lr:6.59E-05
Epoch:13, duration:3273ms, Train_acc:100.0%, Train_loss:0.054, Test_acc:85.5%,Test_loss:0.321, Lr:6.06E-05
Epoch:14, duration:3365ms, Train_acc:100.0%, Train_loss:0.049, Test_acc:85.5%,Test_loss:0.336, Lr:6.06E-05
Epoch:15, duration:3321ms, Train_acc:100.0%, Train_loss:0.046, Test_acc:84.2%,Test_loss:0.311, Lr:5.58E-05
Epoch:16, duration:3273ms, Train_acc:100.0%, Train_loss:0.041, Test_acc:84.2%,Test_loss:0.336, Lr:5.58E-05
Epoch:17, duration:3315ms, Train_acc:100.0%, Train_loss:0.038, Test_acc:85.5%,Test_loss:0.350, Lr:5.13E-05
Epoch:18, duration:3380ms, Train_acc:100.0%, Train_loss:0.034, Test_acc:82.9%,Test_loss:0.314, Lr:5.13E-05
Epoch:19, duration:3275ms, Train_acc:100.0%, Train_loss:0.034, Test_acc:84.2%,Test_loss:0.378, Lr:4.72E-05
Epoch:20, duration:3264ms, Train_acc:100.0%, Train_loss:0.031, Test_acc:82.9%,Test_loss:0.342, Lr:4.72E-05
Epoch:21, duration:3267ms, Train_acc:100.0%, Train_loss:0.029, Test_acc:84.2%,Test_loss:0.299, Lr:4.34E-05
Epoch:22, duration:3243ms, Train_acc:100.0%, Train_loss:0.028, Test_acc:84.2%,Test_loss:0.320, Lr:4.34E-05
Epoch:23, duration:3319ms, Train_acc:100.0%, Train_loss:0.025, Test_acc:82.9%,Test_loss:0.335, Lr:4.00E-05
Epoch:24, duration:3230ms, Train_acc:100.0%, Train_loss:0.025, Test_acc:84.2%,Test_loss:0.351, Lr:4.00E-05
Epoch:25, duration:3251ms, Train_acc:100.0%, Train_loss:0.025, Test_acc:84.2%,Test_loss:0.329, Lr:3.68E-05
Epoch:26, duration:3275ms, Train_acc:100.0%, Train_loss:0.023, Test_acc:84.2%,Test_loss:0.304, Lr:3.68E-05
Epoch:27, duration:3244ms, Train_acc:100.0%, Train_loss:0.022, Test_acc:82.9%,Test_loss:0.324, Lr:3.38E-05
Epoch:28, duration:3319ms, Train_acc:100.0%, Train_loss:0.022, Test_acc:85.5%,Test_loss:0.308, Lr:3.38E-05
Epoch:29, duration:3287ms, Train_acc:100.0%, Train_loss:0.020, Test_acc:85.5%,Test_loss:0.353, Lr:3.11E-05
Epoch:30, duration:3230ms, Train_acc:100.0%, Train_loss:0.019, Test_acc:85.5%,Test_loss:0.346, Lr:3.11E-05
Epoch:31, duration:3285ms, Train_acc:100.0%, Train_loss:0.019, Test_acc:85.5%,Test_loss:0.335, Lr:2.86E-05
Epoch:32, duration:3255ms, Train_acc:100.0%, Train_loss:0.019, Test_acc:85.5%,Test_loss:0.337, Lr:2.86E-05
Epoch:33, duration:3307ms, Train_acc:100.0%, Train_loss:0.018, Test_acc:85.5%,Test_loss:0.334, Lr:2.63E-05
Epoch:34, duration:3281ms, Train_acc:100.0%, Train_loss:0.017, Test_acc:85.5%,Test_loss:0.323, Lr:2.63E-05
Epoch:35, duration:3249ms, Train_acc:100.0%, Train_loss:0.016, Test_acc:85.5%,Test_loss:0.314, Lr:2.42E-05
Epoch:36, duration:3287ms, Train_acc:100.0%, Train_loss:0.017, Test_acc:84.2%,Test_loss:0.368, Lr:2.42E-05
Epoch:37, duration:3337ms, Train_acc:100.0%, Train_loss:0.016, Test_acc:85.5%,Test_loss:0.328, Lr:2.23E-05
Epoch:38, duration:3367ms, Train_acc:100.0%, Train_loss:0.016, Test_acc:84.2%,Test_loss:0.375, Lr:2.23E-05
Epoch:39, duration:3244ms, Train_acc:100.0%, Train_loss:0.015, Test_acc:84.2%,Test_loss:0.329, Lr:2.05E-05
Epoch:40, duration:3277ms, Train_acc:100.0%, Train_loss:0.015, Test_acc:85.5%,Test_loss:0.295, Lr:2.05E-05

在这里插入图片描述

尝试变更学习率优化器及模型优化器为(SGD和Adam的四种组合),测试集acc几乎无变化
尝试变更初始学习率,尝试变更学习率不动态更新,测试集acc无提升

总结

通过本文学习到几种动态学习率的设置与调用,要想得到一个比较好的模型效果,对模型相关参数进行不同的尝试,获取一个相对适配该案例的参数。

这篇关于深度学习 Day16——P5运动鞋识别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/500428

相关文章

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

SpringBoot开发中十大常见陷阱深度解析与避坑指南

《SpringBoot开发中十大常见陷阱深度解析与避坑指南》在SpringBoot的开发过程中,即使是经验丰富的开发者也难免会遇到各种棘手的问题,本文将针对SpringBoot开发中十大常见的“坑... 目录引言一、配置总出错?是不是同时用了.properties和.yml?二、换个位置配置就失效?搞清楚加

Python中图片与PDF识别文本(OCR)的全面指南

《Python中图片与PDF识别文本(OCR)的全面指南》在数据爆炸时代,80%的企业数据以非结构化形式存在,其中PDF和图像是最主要的载体,本文将深入探索Python中OCR技术如何将这些数字纸张转... 目录一、OCR技术核心原理二、python图像识别四大工具库1. Pytesseract - 经典O

Python基于微信OCR引擎实现高效图片文字识别

《Python基于微信OCR引擎实现高效图片文字识别》这篇文章主要为大家详细介绍了一款基于微信OCR引擎的图片文字识别桌面应用开发全过程,可以实现从图片拖拽识别到文字提取,感兴趣的小伙伴可以跟随小编一... 目录一、项目概述1.1 开发背景1.2 技术选型1.3 核心优势二、功能详解2.1 核心功能模块2.

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷