Clickhouse从单节点到集群搭建详解以及分布式分表设计,mysql整表同步,表主键去重以及脚本增删改查,以及可视化工具DBeaver推荐详解

本文主要是介绍Clickhouse从单节点到集群搭建详解以及分布式分表设计,mysql整表同步,表主键去重以及脚本增删改查,以及可视化工具DBeaver推荐详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一.背景

参考:ClickHouse高性能分布式分析数据库

二.分布式设计

原始数据表A:a服务器

分表B1:a服务器 分表B2:b服务器 分表B3:c服务器

分布式表C:a服务器
在这里插入图片描述

三.搭建
1.单节点搭建
#使用脚本安装yum源
curl -s https://packagecloud.io/install/repositories/altinity/clickhouse/script.rpm.sh | sudo bash
#yum 安装 server 以及 client
sudo yum install -y clickhouse-server clickhouse-client# yum下载的数据一般都在/etc/init.d目录下
#查看是否安装完成
sudo yum list installed 'clickhouse*'# 对外开放
cd /etc/clickhouse-server
vim config.xml
<listen_host>0.0.0.0</listen_host># 开机启动clickhouse-server 
# systemctl enable clickhouse-server
# systemctl start clickhouse-server
2.集群搭建(三台机器)

在这里插入图片描述

zookeeper搭建参考centos7搭建kafka集群

# 三台服务器依次进行一下操作
vim config.xml
<!-- 外部配置文件 -->
<include_from>/etc/clickhouse-server/metrika.xml</include_from>cd /etc/clickhouse-server
vim metrika.xml<yandex>
<!-- 集群配置 -->
<clickhouse_remote_servers><!-- 3分片1备份 --><cluster_3shards_1replicas><!-- 数据分片1  --><shard><replica><host>10.8.*.147</host><port>9000</port></replica></shard><!-- 数据分片2  --><shard><replica><host>10.8.*.62</host><port> 9000</port></replica></shard><!-- 数据分片3  --><shard><replica><host>10.8.*.239</host><port>9000</port></replica></shard></cluster_3shards_1replicas>
</clickhouse_remote_servers>
<!-- zk配置  -->
<zookeeper-servers><node index="1"><host>10.8.*.147</host><port>2181</port></node><node index="2"><host>10.8.*.62</host><port>2181</port></node><node index="3"><host>10.8.*.239</host><port>2181</port></node></zookeeper-servers>
</yandex>

查看集群是否搭建成功

# 进入客户端
clickhouse-clientselect * from system.clusters;

在这里插入图片描述

四.Clickhouse表设计
4.1mysql整表同步
# 进入客户端
clickhouse-clientCREATE TABLE clickhousedb.clickhousetablename ENGINE = MergeTree ORDER BY xxxxid AS SELECT * FROM mysql('ip:3306', 'mysqldbname', 'mysqltablename', 'mysqluser', 'mysqlpwd');# 查看迁移后的数据量
select count(1) from clickhousetablename;

在这里插入图片描述

4.2分布式表设计
# 分表设计(a,b,c三台服务器)
CREATE TABLE test.ontime_local (
`ip` Nullable(String),`id` Int32,`media` Int8,`type` Int8,`page_id` String,`home_id` Nullable(String),`obj_name` Nullable(String),`img_url` Nullable(String),`c_url` Nullable(String),`company_url` Nullable(String),`email` Nullable(String),`tel` Nullable(String),`vocation` Nullable(String),`address` Nullable(String),`markers` Nullable(String),`country` Nullable(String),`country_code` Nullable(String),`country_code_iso` Nullable(String),`country_code_iso2` Nullable(String),`province` Nullable(String),`city` Nullable(String),`district` Nullable(String),`street` Nullable(String),`fans` Nullable(String),`lik` Nullable(String),`brief` Nullable(String),`source_kw` Nullable(String),`to_company` Nullable(String),`img_status` Int32,`is_upload` Int32,`twitter` Nullable(String),`linkedin` Nullable(String),`pinterest` Nullable(String),`instagram` Nullable(String),`issuu` Nullable(String),`youtube` Nullable(String),`google` Nullable(String),`times` Nullable(DateTime),`update_time` Nullable(DateTime),`status` Nullable(String)
) ENGINE = MergeTree ORDER BY id SETTINGS index_granularity = 8192
# 分布式表设计
CREATE TABLE test(数据库名).ontime_all ENGINE = Distributed(cluster_3shards_1replicas(集群名), test(数据库名), ontime_local(表名), rand())
# 迁移数据到分布式表
INSERT INTO test.ontime_all SELECT * FROM jwt_client;

查看每个节点分表的数据情况
在这里插入图片描述
查看分布式表的数据情况
在这里插入图片描述

4.3 ReplacingMergeTree根据主键去重
# 根据c_url字段进行去重
CREATE TABLE tablename (c_url String,facebook_content String,facebook_img String,facebook_time String,facebook_time_sort Int64,main_id String,update_time Int64,post_id String,create_date date
) ENGINE = ReplacingMergeTree(create_date, (c_url), 8192);

CREATE TABLE [IF NOT EXISTS] [db.]table_name [ON CLUSTER cluster]
(name1 [type1] [DEFAULT|MATERIALIZED|ALIAS expr1],name2 [type2] [DEFAULT|MATERIALIZED|ALIAS expr2],...
) ENGINE = ReplacingMergeTree([ver])
[PARTITION BY expr]
[ORDER BY expr]
[PRIMARY KEY expr]
[SAMPLE BY expr]
[SETTINGS name=value, ...]# 官网参考案例
CREATE TABLE [IF NOT EXISTS] [db.]table_name [ON CLUSTER cluster]
(name1 [type1] [DEFAULT|MATERIALIZED|ALIAS expr1],name2 [type2] [DEFAULT|MATERIALIZED|ALIAS expr2],...
) ENGINE [=] ReplacingMergeTree(date-column [, sampling_expression], (primary, key), index_granularity, [ver])
4.4 python脚本增删改查操作clickhouse
# -*- coding: utf-8 -*-
# @Time    : 2020/4/26 20:13
# @Author  :import datetime
from decimal import Decimalfrom clickhouse_driver import Clientclass ClickHouse(object):"""clickhouse读写封装"""def __init__(self, host='ip', port='9000', user='default'):self.client = Client(host=host, port=port, user=user)def query(self, sql):"""查询"""ans = self.client.execute(sql, with_column_types=True)def time_transform(obj):"""时间转换处理"""if isinstance(obj, datetime.datetime):return str(obj)elif isinstance(obj, datetime.date):return str(obj)elif isinstance(obj, Decimal):return float(obj)else:return objreturn dict(zip((i[0] for i in ans[1]), (time_transform(ob) for ob in ans[0][0])))def bulk_insert(self, db_name, table_name, kwargs_list):"""批量插入 建议一次性插入数据量大于1000条:param db_name::param table_name::param kwargs_list::return:"""sql = 'INSERT INTO  {db_name}.{table_name}(%s)values'.format(db_name=db_name, table_name=table_name)keys = kwargs_list[0].keys()sql_2 = sql % ",".join(keys)ans = self.client.execute(sql_2, params=kwargs_list)return ansif __name__ == '__main__':click = ClickHouse()kwargs_list = [{"id": 555555, "name": "东莞测试"},{"id": 666666, "name": "东莞测试"},{"id": 777777, "name": "东莞测试"},{"id": 888888, "name": "东莞测试"},{"id": 999999, "name": "东莞测试"}]# test.mytest# 批量插入click.bulk_insert("test", "mytest", kwargs_list)sql = "select * from test.mytest where id=555555;"result = click.query(sql)print(result)# 单条更新操作
ALTER TABLE test.f_kw_url UPDATE ip='ddd112.1112.111.222' where id=11325362;# 单条删除操作
ALTER TABLE test.f_kw_url DELETE where id=999999;
五.Clickhouse可视化工具DBeaver推荐

在这里插入图片描述

参考:https://clickhouse.tech/docs/en/engines/table_engines
参考:https://www.jianshu.com/p/20639fdfdc99
推荐:http://blog.itpub.net/69965230/viewspace-2690052/

这篇关于Clickhouse从单节点到集群搭建详解以及分布式分表设计,mysql整表同步,表主键去重以及脚本增删改查,以及可视化工具DBeaver推荐详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/500095

相关文章

一文详解如何在idea中快速搭建一个Spring Boot项目

《一文详解如何在idea中快速搭建一个SpringBoot项目》IntelliJIDEA作为Java开发者的‌首选IDE‌,深度集成SpringBoot支持,可一键生成项目骨架、智能配置依赖,这篇文... 目录前言1、创建项目名称2、勾选需要的依赖3、在setting中检查maven4、编写数据源5、开启热

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

SQL Server数据库死锁处理超详细攻略

《SQLServer数据库死锁处理超详细攻略》SQLServer作为主流数据库管理系统,在高并发场景下可能面临死锁问题,影响系统性能和稳定性,这篇文章主要给大家介绍了关于SQLServer数据库死... 目录一、引言二、查询 Sqlserver 中造成死锁的 SPID三、用内置函数查询执行信息1. sp_w

HTML5 搜索框Search Box详解

《HTML5搜索框SearchBox详解》HTML5的搜索框是一个强大的工具,能够有效提升用户体验,通过结合自动补全功能和适当的样式,可以创建出既美观又实用的搜索界面,这篇文章给大家介绍HTML5... html5 搜索框(Search Box)详解搜索框是一个用于输入查询内容的控件,通常用于网站或应用程

Linux脚本(shell)的使用方式

《Linux脚本(shell)的使用方式》:本文主要介绍Linux脚本(shell)的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录概述语法详解数学运算表达式Shell变量变量分类环境变量Shell内部变量自定义变量:定义、赋值自定义变量:引用、修改、删

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五

LiteFlow轻量级工作流引擎使用示例详解

《LiteFlow轻量级工作流引擎使用示例详解》:本文主要介绍LiteFlow是一个灵活、简洁且轻量的工作流引擎,适合用于中小型项目和微服务架构中的流程编排,本文给大家介绍LiteFlow轻量级工... 目录1. LiteFlow 主要特点2. 工作流定义方式3. LiteFlow 流程示例4. LiteF