51单片机+DS1302设计一个电子钟(LCD1602显示时间)

2023-12-16 06:45

本文主要是介绍51单片机+DS1302设计一个电子钟(LCD1602显示时间),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、前言

电子钟是一种能够准确显示时间的设备,广泛应用于家庭、办公场所和公共场所,为人们提供了方便和准确的时间信息。本项目设计一个基于51单片机的电子钟,使用DS1302作为RTC时钟芯片,LCD1602作为显示屏,并通过串口方式连接上位机进行时间设置和闹钟设置。

STC89C52作为主控芯片,具有较高的性能和稳定性,可完成对外设的控制和数据处理。DS1302是一款低功耗的实时时钟芯片,能够提供准确的时间计数和日期功能。LCD1602是一款常用的字符型液晶显示屏,具有两行16列的显示区域,能够清晰显示时间和其他相关信息。

通过串口连接上位机,用户可以方便地设置电子钟的时间和闹钟时间,实现个性化需求。此外,电子钟还带有一个蜂鸣器,可以根据设置的闹钟时间进行响铃,提醒用户。

image-20230913112300737

image-20230913112208076

电子钟具有以下功能:

(1)显示当前时间和日期:LCD1602显示屏将实时更新并显示当前的时间和日期信息。

(2)时间设置:通过串口连接上位机,用户可以进行时间的设置,包括小时、分钟和秒。

(3)日期设置:用户可以通过上位机设置当前的年、月和日。

(4)闹钟设置:用户可以设置闹钟的时间,包括小时和分钟。到达设定时间时,蜂鸣器将响铃提醒用户。

(5)整点报时:每到整点,蜂鸣器将发出短促的提示音,提醒用户当前时间。

(6)闹钟响铃:当闹钟时间到达时,蜂鸣器将持续响铃,直到用户停止。

(7)该项目将借助STC89C52单片机的控制能力和串口通信功能,结合DS1302时钟芯片和LCD1602显示屏,实现一个简单而实用的电子钟。用户可以根据自己的

(8)需求进行时间设置和闹钟设置,方便实用,并且具有较高的准确性和稳定性。

二、项目的设计思路

项目的设计思路分为硬件设计和软件设计两部分。

2.1 硬件设计思路

(1)主控芯片选择:选择STC89C52作为主控芯片,由于其较高的性能和稳定性,适合用于控制和数据处理。

(2)RTC时钟芯片选择:选择DS1302作为RTC时钟芯片,具有低功耗、精确计时和日期功能。

(3)显示屏选择:选择LCD1602作为显示屏,它具有两行16列的字符显示区域,能够清晰显示时间和其他相关信息。

(4)串口连接:设计串口连接电路,实现与上位机的通信,用于时间设置和闹钟设置。

(5)蜂鸣器:添加蜂鸣器模块,用于整点报时和闹钟响铃功能。

(6)按键输入:添加按键输入模块,用于用户操作,如切换设置模式、调整时间和设置闹钟。

2.2 软件设计思路

(1)初始化设置:在程序启动时,进行硬件初始化,包括配置主控芯片的引脚、初始化DS1302时钟芯片和LCD1602显示屏。

(2)时间获取与显示:通过DS1302时钟芯片获取当前的时间和日期,并将其显示在LCD1602显示屏上。

(3)串口通信:通过串口与上位机进行通信,接收上位机发送的时间设置和闹钟设置指令,并进行相应的处理

(4)时间设置:根据上位机发送的时间设置指令,更新DS1302时钟芯片的时间计数器。

(5)日期设置:根据上位机发送的日期设置指令,更新DS1302时钟芯片的日期计数器。

(6)闹钟设置:根据上位机发送的闹钟设置指令,设置闹钟时间,并将其保存在主控芯片的内部存储器中。

(7)整点报时:通过检测DS1302时钟芯片的小时计数器,当小时值变化时,触发蜂鸣器发出短促的提示音。

(8)闹钟响铃:通过比较当前时间和保存的闹钟时间,当达到闹钟时间时,触发蜂鸣器持续响铃,直到用户停止或设定的时间段结束。

三、项目硬件接线

(1)STC89C52与DS1302:

STC89C52的P2.0口连接到DS1302的SCLK(时钟)引脚,用于提供时钟信号。

STC89C52的P2.1口连接到DS1302的IO(数据)引脚,用于数据传输。

STC89C52的P2.2口连接到DS1302的RST(复位)引脚,用于对DS1302进行复位操作。

(2)STC89C52与LCD1602:

STC89C52的P0口连接到LCD1602的D0-D7引脚,用于传输字符数据和控制信号。

STC89C52的P2.3口连接到LCD1602的RS(寄存器选择)引脚,用于选择数据或命令寄存器。

STC89C52的P2.4口连接到LCD1602的RW(读写选择)引脚,用于选择读或写操作。

STC89C52的P2.5口连接到LCD1602的E(使能)引脚,用于启动传输。

(3)STC89C52与蜂鸣器模块:

STC89C52的P3.7口连接到蜂鸣器模块的信号引脚,用于触发蜂鸣器响铃。

(4)串口通信接口。在STC89C52单片机上,串口引脚如下:

UART接收线(RXD):连接至外部设备的发送线。

STC89C52的P3.0口(RXD)用于接收串口数据。

UART发送线(TXD):连接至外部设备的接收线。

STC89C52的P3.1口(TXD)用于发送串口数据。

四、项目代码

4.1 DS1302时钟读取、设置

下面代码实现了,STC89C52读取DS1302时钟信息打印到串口,以及设置闹钟、时间读取、打印到串口的功能。其中,采用了UART通信进行与上位机交互,可以接收上位机发送过来的时间字符串,并据此设置闹钟和时间。

#include <reg52.h>
#include <stdio.h>#define uchar unsigned char
#define uint unsigned int// 定义DS1302时钟寄存器地址
#define DS1302_SEC_REG 0x80
#define DS1302_MIN_REG 0x82
#define DS1302_HR_REG 0x84
#define DS1302_DAY_REG 0x86
#define DS1302_MONTH_REG 0x88
#define DS1302_YEAR_REG 0x8C// 定义DS1302控制寄存器命令
#define DS1302_CMD_WRITE 0x80
#define DS1302_CMD_READ 0x81// 定义串口波特率为9600
#define BAUDRATE 9600
#define FOSC 11059200L
#define TIMER_INTERVAL (65536 - FOSC / 12 / BAUDRATE)// 声明全局变量
uchar time_buffer[20]; // 存放时间字符串
uchar alarm_buffer[20]; // 存放闹钟时间字符串
uint i;
bit flag; // 标记是否接收到上位机的时间字符串// 初始化UART模块
void InitUart() {TMOD &= 0x0F;TMOD |= 0x20;TH1 = TIMER_INTERVAL / 256;TL1 = TIMER_INTERVAL % 256;PCON |= 0x80;SCON = 0x50;ES = 1;TR1 = 1;EA = 1;
}// 将单个字节发送到串口
void SendData(uchar dat) {SBUF = dat;while (!TI);TI = 0;
}// 将字符串发送到串口
void SendString(uchar *s) {while (*s != '\0') {SendData(*s++);}
}// 初始化DS1302时钟芯片
void InitDS1302() {uchar i;// 使能DS1302写保护功能DS1302_CE = 0;DS1302_SCL = 0;DS1302_CE = 1;Write_DS1302(DS1302_CMD_WRITE | 0x8e, 0x80);// 关闭时钟允许,准备写入数据Write_DS1302(DS1302_CMD_WRITE | 0x90, 0x00);// 写入年月日时分秒周Write_DS1302(DS1302_SEC_REG, 0x00);Write_DS1302(DS1302_MIN_REG, 0x30);Write_DS1302(DS1302_HR_REG, 0x11);Write_DS1302(DS1302_DAY_REG, 0x08);Write_DS1302(DS1302_MONTH_REG, 0x09);Write_DS1302(DS1302_YEAR_REG, 0x21);Write_DS1302(0x8e, 0x00);// 初始化闹钟时间for (i = 0; i < 20; i++) {alarm_buffer[i] = 0;}
}// 向DS1302写入数据
void Write_DS1302(uchar addr, uchar dat) {uchar i;DS1302_CE = 0;DS1302_SCL = 0;// 发送起始信号DS1302_CE = 1;DS1302_SCL = 1;DS1302_CE = 0;// 发送命令字节地址DS1302_WriteByte(addr);// 发送数据字节DS1302_WriteByte(dat);// 停止信号DS1302_SCL = 0;DS1302_CE = 1;// 延时至少1usfor (i = 0; i < 10; i++);
}// 向DS1302读取数据
uchar Read_DS1302(uchar addr) {uchar dat;uchar i;DS1302_CE = 0;DS1302_SCL = 0;// 发送起始信号DS1302_CE = 1;DS1302_SCL = 1;DS1302_CE = 0;// 发送命令字节地址DS1302_WriteByte(addr | 0x01);// 读取数据字节dat = DS1302_ReadByte();// 停止信号DS1302_SCL = 0;DS1302_CE = 1;// 延时至少1usfor (i = 0; i < 10; i++);return dat;
}// 读取DS1302时间并打印到串口
void ReadTime() {uchar sec, min, hour, day, month, year;sprintf(time_buffer, "Time: ");sec = Read_DS1302(DS1302_SEC_REG);min = Read_DS1302(DS1302_MIN_REG);hour = Read_DS1302(DS1302_HR_REG);day = Read_DS1302(DS1302_DAY_REG);month = Read_DS1302(DS1302_MONTH_REG);year = Read_DS1302(DS1302_YEAR_REG);sprintf(time_buffer + 6, "%02d:%02d:%02d %02d/%02d/%02d\r\n", hour, min, sec, day, month, year);SendString(time_buffer);
}// 向DS1302写入闹钟时间
void SetAlarm(uchar *str) {uint i = 0;// 将字符串转换为数字while (str[i] != '\0') {alarm_buffer[i] = str[i] - '0';i++;if (i > 19) // 防止溢出break;}// 写入闹钟时间Write_DS1302(DS1302_CMD_WRITE | 0x81, alarm_buffer[10] << 4 | alarm_buffer[11]);Write_DS1302(DS1302_CMD_WRITE | 0x83, alarm_buffer[8] << 4 | alarm_buffer[9]);Write_DS1302(DS1302_CMD_WRITE | 0x85, alarm_buffer[6] << 4 | alarm_buffer[7]);
}// 从串口接收数据中解析出时间信息
void ParseTime() {uchar i, j;uchar temp;for (i = 0; i < 20; i++) {time_buffer[i] = 0;}// 接收字符串格式为:hh:mm:ss dd/mm/yyfor (i = 0; i < 8; i++) {temp = 0;for (j = 0; j < 2; j++) {temp *= 10;temp += (SBUF - '0');while (!RI); // 等待接收完成RI = 0;}time_buffer[i] = temp;if (i == 2 || i == 4) {while (SBUF != ' '); // 跳过空格字符while (!RI); // 等待接收完成RI = 0;}}flag = 1; // 标记已经接收到字符串
}// 主函数
void main() {InitUart();InitDS1302();flag = 0;while (1) {if (flag) { // 接收到时间字符串,设置闹钟和时间SetAlarm(time_buffer);Write_DS1302(DS1302_CMD_WRITE | 0x80, time_buffer[6] << 4 | time_buffer[7]);Write_DS1302(DS1302_CMD_WRITE | 0x82, time_buffer[3] << 4 | time_buffer[4]);Write_DS1302(DS1302_CMD_WRITE | 0x84, time_buffer[0] << 4 | time_buffer[1]);flag = 0;}ReadTime(); // 读取当前时间并发送到串口}
}// UART接收中断函数
void UartIsr() interrupt 4 {if (RI) { // 接收到数据ParseTime(); // 解析时间字符串}RI = 0;
}

4.2 LCD1602显示时钟

基于STC89C52控制LCD1602显示时间字符串的实现代码。

#include <reg52.h>
#include <stdio.h>// 定义Data和Command寄存器选择端口
sbit LCD_RS = P2^0;  // RS引脚(寄存器选择)
sbit LCD_RW = P2^1;  // RW引脚(读写选择)
sbit LCD_EN = P2^2;  // EN引脚(使能)// 定义数据总线端口
#define LCD_DATA P0    void DelayMs(unsigned int ms) {unsigned int i, j;for (i = 0; i < ms; i++)for (j = 0; j < 120; j++);
}void WriteCommand(unsigned char cmd) {LCD_RS = 0;  // 选择指令寄存器LCD_RW = 0;  // 写模式LCD_EN = 0;  // 低电平使能LCD_DATA = cmd;  // 发送指令DelayMs(1);  // 延时等待指令写入LCD_EN = 1;  // 高电平使能DelayMs(1);  // 持续一段时间LCD_EN = 0;  // 结束使能
}void WriteData(unsigned char dat) {LCD_RS = 1;  // 选择数据寄存器LCD_RW = 0;  // 写模式LCD_EN = 0;  // 低电平使能LCD_DATA = dat;  // 发送数据DelayMs(1);  // 延时等待数据写入LCD_EN = 1;  // 高电平使能DelayMs(1);  // 持续一段时间LCD_EN = 0;  // 结束使能
}void LCDInit() {WriteCommand(0x38);  // 设置显示模式为2行、5x8点阵字符WriteCommand(0x0C);  // 显示器开,光标关闭WriteCommand(0x06);  // 光标右移,整屏不移动WriteCommand(0x01);  // 清除显示并设置光标回到初始位置
}void LCDDisplayTime(char* time) {int i;WriteCommand(0x80);  // 设置光标位置为第一行的起始位置for (i = 0; i < 16; i++) {WriteData(time[i]);  // 在第一行显示时间字符串}WriteCommand(0xC0);  // 设置光标位置为第二行的起始位置for (i = 0; i < 16; i++) {WriteData(time[16 + i]);  // 在第二行显示时间字符串}
}void main() {char time_buffer[32] = "Current Time: 00:00:00";  // 时间字符串unsigned char sec = 0, min = 0, hour = 0;  // 当前时间变量LCDInit();  // 初始化LCD显示器while (1) {// 更新时间变量sec++;if (sec >= 60) {sec = 0;min++;if (min >= 60) {min = 0;hour++;if (hour >= 24) {hour = 0;}}}// 格式化时间字符串sprintf(time_buffer + 14, "%02d:%02d:%02d", hour, min, sec);// 显示时间字符串LCDDisplayTime(time_buffer);DelayMs(1000);  // 延时1秒}
}

代码使用LCD_RSLCD_RWLCD_EN分别表示LCD1602的RS、RW和EN引脚。数据总线通过LCD_DATA定义,连接到P0端口。先初始化LCD显示器,在一个无限循环中更新时间变量并格式化时间字符串,最后在LCD上显示时间字符串。

这篇关于51单片机+DS1302设计一个电子钟(LCD1602显示时间)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/499521

相关文章

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五

从基础到进阶详解Pandas时间数据处理指南

《从基础到进阶详解Pandas时间数据处理指南》Pandas构建了完整的时间数据处理生态,核心由四个基础类构成,Timestamp,DatetimeIndex,Period和Timedelta,下面我... 目录1. 时间数据类型与基础操作1.1 核心时间对象体系1.2 时间数据生成技巧2. 时间索引与数据

MyBatis设计SQL返回布尔值(Boolean)的常见方法

《MyBatis设计SQL返回布尔值(Boolean)的常见方法》这篇文章主要为大家详细介绍了MyBatis设计SQL返回布尔值(Boolean)的几种常见方法,文中的示例代码讲解详细,感兴趣的小伙伴... 目录方案一:使用COUNT查询存在性(推荐)方案二:条件表达式直接返回布尔方案三:存在性检查(EXI

RedisTemplate默认序列化方式显示中文乱码的解决

《RedisTemplate默认序列化方式显示中文乱码的解决》本文主要介绍了SpringDataRedis默认使用JdkSerializationRedisSerializer导致数据乱码,文中通过示... 目录1. 问题原因2. 解决方案3. 配置类示例4. 配置说明5. 使用示例6. 验证存储结果7.

利用Python实现时间序列动量策略

《利用Python实现时间序列动量策略》时间序列动量策略作为量化交易领域中最为持久且被深入研究的策略类型之一,其核心理念相对简明:对于显示上升趋势的资产建立多头头寸,对于呈现下降趋势的资产建立空头头寸... 目录引言传统策略面临的风险管理挑战波动率调整机制:实现风险标准化策略实施的技术细节波动率调整的战略价

idea中project的显示问题及解决

《idea中project的显示问题及解决》:本文主要介绍idea中project的显示问题及解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录idea中project的显示问题清除配置重China编程新生成配置总结idea中project的显示问题新建空的pr

Python日期和时间完全指南与实战

《Python日期和时间完全指南与实战》在软件开发领域,‌日期时间处理‌是贯穿系统设计全生命周期的重要基础能力,本文将深入解析Python日期时间的‌七大核心模块‌,通过‌企业级代码案例‌揭示最佳实践... 目录一、背景与核心价值二、核心模块详解与实战2.1 datetime模块四剑客2.2 时区处理黄金法

macOS Sequoia 15.5 发布: 改进邮件和屏幕使用时间功能

《macOSSequoia15.5发布:改进邮件和屏幕使用时间功能》经过常规Beta测试后,新的macOSSequoia15.5现已公开发布,但重要的新功能将被保留到WWDC和... MACOS Sequoia 15.5 正式发布!本次更新为 Mac 用户带来了一系列功能强化、错误修复和安全性提升,进一步增

Pandas进行周期与时间戳转换的方法

《Pandas进行周期与时间戳转换的方法》本教程将深入讲解如何在pandas中使用to_period()和to_timestamp()方法,完成时间戳与周期之间的转换,并结合实际应用场景展示这些方法的... 目录to_period() 时间戳转周期基本操作应用示例to_timestamp() 周期转时间戳基

JavaScript时间戳与时间的转化常用方法

《JavaScript时间戳与时间的转化常用方法》在JavaScript中,时间戳(Timestamp)通常指Unix时间戳,即从1970年1月1日00:00:00UTC到某个时间点经过的毫秒数,下面... 目录1. 获取当前时间戳2. 时间戳 → 时间对象3. 时间戳php → 格式化字符串4. 时间字符