CS231n作业笔记2.5:dropout的实现与应用

2023-12-15 23:38

本文主要是介绍CS231n作业笔记2.5:dropout的实现与应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

CS231n简介

详见 CS231n课程笔记1:Introduction。
本文都是作者自己的思考,正确性未经过验证,欢迎指教。

作业笔记

dropout中唯一需要注意的就是为了平衡train与test,通过除以期望值即可。

1. 前向传播

  if mode == 'train':mask = (np.random.rand(*x.shape)<p)out = x*mask / pelif mode == 'test':out = xmask = np.ones_like(x)

2. 后向传播

  if mode == 'train':dx = dout * mask / dropout_param['p']elif mode == 'test':dx = doutreturn dx

3. 应用:带dropout的多层神经网络

在每一层ReLU后接一层dropout即可。关于多层神经网络的实现,请参考CS231n作业笔记2.4:Batchnorm的实现与使用。

    cache = {}hidden_value = Nonehidden_value,cache['fc1'] = affine_forward(X,self.params['W1'],self.params['b1'])if self.use_batchnorm:hidden_value,cache['bn1'] = batchnorm_forward(hidden_value, self.params['gamma1'], self.params['beta1'], self.bn_params[0])hidden_value,cache['relu1'] = relu_forward(hidden_value)if self.use_dropout:hidden_value, cache['drop1'] = dropout_forward(hidden_value,self.dropout_param)for index in range(2,self.num_layers):hidden_value,cache['fc'+str(index)] = affine_forward(hidden_value,self.params['W'+str(index)],self.params['b'+str(index)])if self.use_batchnorm:hidden_value,cache['bn'+str(index)] = batchnorm_forward(hidden_value,  self.params['gamma'+str(index)], self.params['beta'+str(index)], self.bn_params[index-1])hidden_value,cache['relu'+str(index)] = relu_forward(hidden_value)if self.use_dropout:hidden_value, cache['drop'+str(index)] = dropout_forward(hidden_value,self.dropout_param)scores,cache['score'] = affine_forward(hidden_value,self.params['W'+str(self.num_layers)],self.params['b'+str(self.num_layers)])# If test mode return earlyif mode == 'test':return scoresloss, grads = 0.0, {}loss,dscores = softmax_loss(scores,y)for index in range(1,self.num_layers+1):loss += 0.5*self.reg*np.sum(self.params['W'+str(index)]**2)dhidden_value,grads['W'+str(self.num_layers)],grads['b'+str(self.num_layers)] = affine_backward(dscores,cache['score'])for index in range(self.num_layers-1,1,-1):if (self.use_dropout):dhidden_value = dropout_backward(dhidden_value, cache['drop'+str(index)])dhidden_value = relu_backward(dhidden_value,cache['relu'+str(index)])if self.use_batchnorm:dhidden_value, grads['gamma'+str(index)], grads['beta'+str(index)] = batchnorm_backward(dhidden_value, cache['bn'+str(index)])dhidden_value,grads['W'+str(index)],grads['b'+str(index)] = affine_backward(dhidden_value,cache['fc'+str(index)])if (self.use_dropout):dhidden_value = dropout_backward(dhidden_value, cache['drop1'])dhidden_value = relu_backward(dhidden_value,cache['relu1'])if self.use_batchnorm:dhidden_value, grads['gamma1'], grads['beta1'] = batchnorm_backward(dhidden_value, cache['bn1'])dhidden_value,grads['W1'],grads['b1'] = affine_backward(dhidden_value,cache['fc1'])for index in range(1,self.num_layers+1):grads['W'+str(index)] += self.reg * self.params['W'+str(index)] 

这篇关于CS231n作业笔记2.5:dropout的实现与应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/498324

相关文章

QT Creator配置Kit的实现示例

《QTCreator配置Kit的实现示例》本文主要介绍了使用Qt5.12.12与VS2022时,因MSVC编译器版本不匹配及WindowsSDK缺失导致配置错误的问题解决,感兴趣的可以了解一下... 目录0、背景:qt5.12.12+vs2022一、症状:二、原因:(可以跳过,直奔后面的解决方法)三、解决方

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

MySQL中On duplicate key update的实现示例

《MySQL中Onduplicatekeyupdate的实现示例》ONDUPLICATEKEYUPDATE是一种MySQL的语法,它在插入新数据时,如果遇到唯一键冲突,则会执行更新操作,而不是抛... 目录1/ ON DUPLICATE KEY UPDATE的简介2/ ON DUPLICATE KEY UP

Python中Json和其他类型相互转换的实现示例

《Python中Json和其他类型相互转换的实现示例》本文介绍了在Python中使用json模块实现json数据与dict、object之间的高效转换,包括loads(),load(),dumps()... 项目中经常会用到json格式转为object对象、dict字典格式等。在此做个记录,方便后续用到该方

JWT + 拦截器实现无状态登录系统

《JWT+拦截器实现无状态登录系统》JWT(JSONWebToken)提供了一种无状态的解决方案:用户登录后,服务器返回一个Token,后续请求携带该Token即可完成身份验证,无需服务器存储会话... 目录✅ 引言 一、JWT 是什么? 二、技术选型 三、项目结构 四、核心代码实现4.1 添加依赖(pom

SpringBoot路径映射配置的实现步骤

《SpringBoot路径映射配置的实现步骤》本文介绍了如何在SpringBoot项目中配置路径映射,使得除static目录外的资源可被访问,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一... 目录SpringBoot路径映射补:springboot 配置虚拟路径映射 @RequestMapp

Python与MySQL实现数据库实时同步的详细步骤

《Python与MySQL实现数据库实时同步的详细步骤》在日常开发中,数据同步是一项常见的需求,本篇文章将使用Python和MySQL来实现数据库实时同步,我们将围绕数据变更捕获、数据处理和数据写入这... 目录前言摘要概述:数据同步方案1. 基本思路2. mysql Binlog 简介实现步骤与代码示例1

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

基于C#实现PDF转图片的详细教程

《基于C#实现PDF转图片的详细教程》在数字化办公场景中,PDF文件的可视化处理需求日益增长,本文将围绕Spire.PDFfor.NET这一工具,详解如何通过C#将PDF转换为JPG、PNG等主流图片... 目录引言一、组件部署二、快速入门:PDF 转图片的核心 C# 代码三、分辨率设置 - 清晰度的决定因

Java Kafka消费者实现过程

《JavaKafka消费者实现过程》Kafka消费者通过KafkaConsumer类实现,核心机制包括偏移量管理、消费者组协调、批量拉取消息及多线程处理,手动提交offset确保数据可靠性,自动提交... 目录基础KafkaConsumer类分析关键代码与核心算法2.1 订阅与分区分配2.2 拉取消息2.3