本文主要是介绍MIT18.06线性代数课程笔记11:矩阵空间、子空间的交和、秩一矩阵,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
课程简介
18.06是Gilbert Strang教授在MIT开的线性代数公开课,课程视频以及相关资料请见https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/index.htm。
课程笔记
这部分对向量空间做了一些拓展,介绍了矩阵空间以及解集空间,然后给出了子空间的操作定义:交、和。然后Strang给出了一些对秩一矩阵性质的定理,应该会在后面的章节中证明。
1. 向量空间的扩展
回忆向量空间的定义:满足标量乘法以及加法的结果仍然位于同一集合内的向量集合。具体的
注意到实际上只需要定义对元素的标量乘法以及加法,即可对任意元素定义空间。即对向量空间的拓展。
1.1. 矩阵空间
矩阵空间的元素为任意固定大小的矩阵 M∈Rm×n ,标量乘法和加法的定义与实际矩阵的定义一致。则有 ∀n,m,Rm×n is a matrix space。因为 m×n 维矩阵的标量乘法以及加法结果都是 m×n 维矩阵。
空间的维度为基的个数,而 Rm×n 有 mn 个,所以维度也是 mn 。
同样的,可以对subspace做拓展,例如对于3维方阵 R3×3 构成的原空间,对角阵集合 D 、对称矩阵集合
并且有
1.2. 子空间的操作符:交、和
1.2.1. 子空间的交
子空间的交的操作等同于集合的交集,即
交集能够作为操作符等级存在是因为子空间的交仍然是原空间的子空间,并且是操作数的子空间。证明也很简单:
1.2.2. 子空间的和
注意到子空间的交仍然是子空间,这是一个很好的性质。如果直接使用交集的对应操作:并集,得到的集合却并不是子空间(例如两条线的并集大概率仍然是两条线,并不是子空间;而交集则是一条线或者一个点,均为子空间)。所以对并集做拓展,定义了子空间的和 + ,如下:
等价定义是 S1∪S2 的span。
上诉定义之后,子空间的和仍然是子空间(因为是span,所以必然是子空间)
1.2.3. 子空间的维度与子空间交和维度的关系
先上结论
一个例子可以包含上诉所有定义即定理,写在下面:
原空间为3维方阵 R3×3 ,两个子空间为对称矩阵集合 S 以及上三角矩阵
上诉证明基本上都是将基列出来之后进行验证。例如对称矩阵的维度是6,原因是对角线上三个元素可以是三个任意值,然后剩余6个元素两两对应,还有三个任意值,共6维。其余类似
定理的证明:此部分是笔者自己演绎的,Strang在课上并没有证明,所以正确性有待验证,欢迎指教。
在求解空间的维度的时候,可以找到其一组基 Basis(S) 。所以上诉等式两边的基的个数相同即可。
Lemma:原空间存在一组包含子空间基的基。即 ∃B,Basis(S1)⊆B∧S1 is the basis of S, where S1 is a subspace of S 。这部分可以使用构造法证明,先得到子空间的基,然后将原空间的一组基对子空间作正交,得到一组与子空间正交的元素,然后剩余元素中线性无关元素的个数应该是原空间维度减去子空间维度。定义上诉操作为 Basis(S)−Basis(S1) ,则有 |Basis(S)−Basis(S1)|=|Basis(S)|−|Basis(S1)| 。
那么有
S1+S2=span(Basis(S1))+span(Basis(S2)) =span(Basis(S1)∪Basis(S2)) =span(Basis(S1)+Basis(S2)−Basis(S1∩S2))
以上只是笔者的一些思考,欢迎指教。
1.3. 解集空间
的解集空间为 y=a1sinx+a2cosx ,两个特解(基)为 sinx 和 cosx 。
称解集空间为空间的原因是两个解的和仍然是解,解乘以一个标量仍然是解(这个里面的原因是求导操作具有线性性)。
2. 秩一矩阵
所谓秩一矩阵,即秩为1的矩阵。
定理:任意秩一矩阵可以分解为列向量和行向量的乘积,即 r(A)=1⇒∃u,v,uvT=A 。
这个证明也是笔者自己演绎的。回忆矩阵乘法的多种解释方式,右乘一个行向量等价于对左操作数的多种线性组合。基于是行向量,所以均为 u 的倍数,所以
r(uvT)=1 。进一步,因为 r(A)=1 ,所以其列向量实际上均互为倍数,所以可以很方便的找到 u,v for any A:r(A)=1 。例如已知 A∈R2×3,r(A)=1 ,第一列为 [2,3]T 。因为 r(A)=1 ,所以第二列和第三列必须为第一列的倍数,假设第二列为 [1,1.5]T ,以及第三列为 [4,6]T 。那么容易发现 A=[2,3]T[1,0.5,2] 。
然后Strang又提出了一个定理:任意矩阵 A 可以拆解为
Strang同样没有给出证明,如果可以使用SVD的话倒是显而易见,但是笔者猜测这个是要用于证明SVD的,所以会引入循环论证。如果不使用SVD的话,笔者猜测是要用到消元法中的性质,有些麻烦,先不证了。
从上面的定理的一个直接推理是: r(A+B)≤r(A)+r(B) ,因为 A 可以拆解为
再来一个推理是:所有秩小于 k 的矩阵集合不是子空间,因为加和的秩可能大于
这篇关于MIT18.06线性代数课程笔记11:矩阵空间、子空间的交和、秩一矩阵的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!