2023 re:Invent使用 PartyRock 和 Amazon Bedrock 安全高效构建 AI 应用程序

本文主要是介绍2023 re:Invent使用 PartyRock 和 Amazon Bedrock 安全高效构建 AI 应用程序,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

本篇文章授权活动官方亚马逊云科技文章转发、改写权,包括不限于在 亚马逊云科技开发者社区, 知乎,自媒体平台,第三方开发者媒体等亚马逊云科技官方渠道

“Your Data, Your AI, Your Future.(你的数据,你的AI,你的未来。)

如果问2023年,大家谈论频率最多的几个技术词汇,我想生成式AI、大模型一定有一席之地。

11月6日,OpenAI发布的GPT Builder,让AI App的开发门槛,降到了“搭积木”的程度。通过将应用开发程序封装进不同的流程模块,用户可以在GPT Builder中用设置参数的方式完成应用的开发。

怎样的开发模式,才能做到比GPTs的门槛更低?一年一度的 re:Invent用PartyRock给出了答案。只要一句话,就能搞定所有的开发流程。Swami博士在开场中这样说道:“今天,人类和技术之间正展现出前所未有的紧密关系,生成式AI正以许多意想不到的方式提升人类的生产力。这种关系让人类与人工智能共同形成新的创新充满了无限可能性。”

以往的生成式AI,更像是一本自带操作手册的工具书,你需要遵循规则去不断的进行尝试,比如提示词工程、模型微调掌握各种技能,逐渐熟悉一个全新的领域。从创意到应用落地就更加离不开一定的编程基础了,如果你想创建有特色的AI应用,又苦于自己不会编程,那么用PartyRock就可以很方便创建自定义的GPT。最近这是一次让所有普通人都能够平等的享受AI红利的机会。

PartyRock提供的轻量化的To C应用的开发环境,无论你是否懂代码、懂架构,都可以快速搭建一个属于你自己的生成式Al应用。利用PartyRock以及其背后亚马逊云科技强大的生成式Al能力(PartyRock由Amazon Bedrock提供支持,它是一项全面管理服务,借助API来使用领先各种人工智能基础模型),你可以用拖拽的方式构建一个自己的对话助手,设计一个人物角色生成器,甚至生成一款小游戏。

趁着大会发布,我也体验了一把快速探索AI应用的乐趣,接下来让我们动手实验一下吧!

PartyRock-只需要一个Idea,轻松探索AI应用

之所以想用PartyRock做一些小应用,是源于我自己困扰的一些场景。

提高效率也好,放松娱乐也罢,一直以来个人习惯于将工作中的一些有意思的轮子保留下来,但是由于精力有限,很多demo是不连续性的,也意味着没有持续产出。伴随生成式AI火热起来,个人也尝试搭建过一些个人知识库。但是效果也比较有限,数据量级太小没有办法对于训练产生有效影响。所以不了了之。

实践下来,倒是一些轻量级的AI工具经常收藏,比如AI生成周报,AI的格式整理工具,但是比较难以定制一些个性化需求,比如当我想对现有的工具影响它的输出,比如,我希望对于周报可以进行AI工时统计量化的需求,我便无能为力。

Everyone can build AI apps.

PartyRock的官网简明扼要的概述了它的作用,让每个人都可以构建AI 应用。PartyRock的核心在于无代码的应用程序生成器,你可以向它提出任何要求,在短暂的等待后,会给你生成一个满足基本需求的AI应用。

一段话生成AI应用——面试宝典

一句话实现AI应用,真的这么神奇吗?这里我们在 APP builder 里输出一个具体的想法,尽量描述清楚应用的需求及细节,比如我们想要生成一个面试题库APP,输入我们的需求,PartyRock是支持多语言的,我们这里提出中文需求,看看AI模型的理解程度,点击 Generate app 就开始生成了。

稍等一到两分钟,一个面试题库APP就生成了,PartyRock程序较好的理解了我们的语义,并且生成了一个程序。

通过输入关键词和难度,随机生成问题。用户回答后输出正确答案。

语义识别及GUI生成是最基础的,我们还是要实际使用下,生成软件的功能性是否满足我们的需求,

这里我们输入几个关键词:“CSS3” “自适应” “兼容性” 选择难度为困难,可以看到LLM比较清晰的输出了一个选择题。

这里我们选择回答选项,验证一下结果,可以看到整个流程下来还是很好的满足了我们的需求。

体验到这里,我已经大体了解PartyRock的设计,不得不佩服PartyRock的脑洞还是很大的,通过生成式AI+工作流的形式,解决了低代码时代的一些问题,在另一个维度实现了无代码编程。

这是一个跨时代的改变,之前的低代码工具大多定位很尴尬,对于程序员只能体现部分生产力的解放,并且随着业务量的积累,在制造轮子维护轮子及平衡定制中不得抽身。另一维度,对于无编程经验的人来说,拖拉拽的实现方式仍然不够友好,做出合格的UE,上手成本还是比较高。

与其他细分模型的AI助手而言,PartyRock不仅仅是一个定制版助手,它更是一个普通人快速验证想法的一个工具,真的简约而不简单。

应用拆解分析

一句话生成应用固然便捷,但是提示词工程的试错成本还是比较高的,如果我们有一定的编程基础,还能不能玩一点新花样出来呢?答案是显而易见的。

无论是空模版创建还是,AI生成的应用,我们会发现,它是有很多小框框组成的,这里我们叫它“元组件”或者“小部件”吧,这和工作流的节点思想是有共性的。

这里我们点击刚刚生成的应用,右上角的编辑发现,实际上小部件是存在不同类型的。挂载着不同的模型实例,并且通过提示词工程,使得用户的输入输出与模型直接进行通信和交互。

其中使用 @ 符合直接引用其他 widget 生成的内容,让不同小部件建立关联。

比如,我需要根据用户输入的内容进行生成问题,那么我在提示词里面就可以直接引用用户输入的部分;比如利用 “@keywaord” 引用扩写的内容。如下图 Prompt 中高亮的部分。

如果我们想要改变整个流程的话,只需要增加一个新的widget,并且建立上下文的引用就可以进行改造

而新建的widget目前有以上几类,用户输入,文本模型输出、图像模型输出、机器人。

构建一个应用就变成了构建一个工作流或者任务流。我们可以使用widget积木式的构建应用,并通过@建立输入输出流的联系,让想象插上翅膀,大脑洞的奇思妙想以及清晰的逻辑,就可以组成很多有趣的创新应用。

分享创意与应用共建

ChatRPG是官方提供的一个最有趣的案例,而且是比较典型的案例。这个应用利用了 AI 对话实现了文字游戏,你可以通过对话的形式选择不同的事件来推进剧情,同时通过多种组件的灵活运用,让整个文字游戏变的更加场景感。

受到这个应用的启发,我连夜写了一个小游戏—是男人就活过100天。哇太好玩了,根本停不下来。

没有思路怎么办,没有关系,PartyRock 提供了 remix 的功能,你可以直接复制(remix)一个别人已经发布的应用,直接修改里面的参数或者提示词。

独乐乐不如众乐乐,当你创建了一个有趣的应用,也可以通过分享自己的应用让大家一起来玩。是不是很有意思呢

到这里,基本的PartyRock的体验接近尾声,我们来做个简短的总结:

  • 无代码AI生成:PartyRock以生成式AI +工作流的形式实现了一个无代码生成器。实现了AI的自建

  • 组件化工作流:通过小组件widget的形式,可视化的创建引用关系。其背后是强大的AI模型能力集、以及云上能力。

  • 生态共建:通过工作台、分享、clone的模式,鼓励大家共创共建应用。

观一点而探其貌,究竟是什么赋予了PartyRock这么灵活的能力,这就不得不提一下-Amazon Bedrock

Amazon Bedrock

本次大会还发布了全面托管的生成式 AI 服务-Bedrock,提供了多个领先的高性能基础模型,同时增加了对于Amazon Titan Embeddings、Meta Llama2的支持。

而PartyRock实际上依托于Bedrock的强大能力,当开发者或者具有开发能力的公司有相关需求时,可以使用Bedrock提供的AI21 Labs、Anthropic、Cohere Inc.、Meta Platforms Inc.、Stability AI Ltd.等领先人工智能公司的高性能模型以及亚马逊的定制模型,构建自己的人工智能应用。

简单来讲,常见的汇总文档、对话助手、生成图像以及提供人工智能驱动的搜索等实用功能都可以通过Amazon Bedrock去构建。

2023 re:Invent 思考与展望

通过本次大会的学习与产品体验,我感觉AI的应用重构未来会成为一种趋势。

看本次发布的产品,从基础设施层的Inferentia和Trainium,模型工具层的Amazon Bedrock再到应用层的Amazon CodeWhisperer。这说明AI的深度基建正在逐步建立起来,完整的产品体系逐步的形成共识。

未来会出现越来越多类似PartyRock的应用,会将基础建设进行封装,用户看到的是所见即所得的轻量化应用。越来越多的应用都会AI化

未来的交互式AI

我一直在想未来的生成式AI的交互会向什么方向发展。简单、高效、准确是我在使用C端AI产品的几个核心需求。

结合大会及动手实验,PartyRock相较于GPTs的优势,除了AWS自研的模型Titan支撑,灵活性也是非常可圈可点的,PartyRock的0代码交互十分适合小白,通过工作流的形式串联起多个AI模型,“搭积木”的方式快速的实现一个定制应用。

另一方面相较于已经展露头角的OpenAI,PartyRock生成的AI应用,既可以上架IOS和安卓等主流操作系统,也能作为一个网站发布。多种形态意味着有更多种可能,甚至跨平台进行互动。这点希望后面会产生相关的应用或者功能,一定会非常吸引眼球的。

安全的AI

大会的一个重要议题,是如何高效快速的让AI应用落地,同时保证数据安全。

生成式AI作为一把双刃剑,在创立发展的数十年都饱受争议,前段时间沸沸扬扬的奥特曼离职时间也为商业化与AI伦理,安全问题敲响了警钟。这次大会中Adam Selipsky博士也提出了“负责任的AI。”这个概念。我认为,AI安全性在两个维度去思考。一方面是生成的内容一定应该是合规的;另一方面是作为模型基础的训练数据应该是安全的。数据安全及知识产权是企业应用AI的一个重要考量。作为一个团队的leader,工程化、安全性、稳定性、以及投入产出比是我在研发基础建设上考虑的几个核心维度。企业应用,只有确保安全,AI才能越走越稳,长期发展。

同时本次大会很多创新案例,也真正体现了在AI浪潮中把握数据价值的重要性,给创业者使用AI创业提供了一些可行性的思路,在AI在逐步替代劳动生产力的同时,对于个人而言,如何在AI浪潮的风口上提升个人能力,把握时代的机会,这个课题,即是挑战,同时也是机遇!

这篇关于2023 re:Invent使用 PartyRock 和 Amazon Bedrock 安全高效构建 AI 应用程序的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/497149

相关文章

C++中assign函数的使用

《C++中assign函数的使用》在C++标准模板库中,std::list等容器都提供了assign成员函数,它比操作符更灵活,支持多种初始化方式,下面就来介绍一下assign的用法,具有一定的参考价... 目录​1.assign的基本功能​​语法​2. 具体用法示例​​​(1) 填充n个相同值​​(2)

Spring StateMachine实现状态机使用示例详解

《SpringStateMachine实现状态机使用示例详解》本文介绍SpringStateMachine实现状态机的步骤,包括依赖导入、枚举定义、状态转移规则配置、上下文管理及服务调用示例,重点解... 目录什么是状态机使用示例什么是状态机状态机是计算机科学中的​​核心建模工具​​,用于描述对象在其生命

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

深入理解Go语言中二维切片的使用

《深入理解Go语言中二维切片的使用》本文深入讲解了Go语言中二维切片的概念与应用,用于表示矩阵、表格等二维数据结构,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录引言二维切片的基本概念定义创建二维切片二维切片的操作访问元素修改元素遍历二维切片二维切片的动态调整追加行动态

prometheus如何使用pushgateway监控网路丢包

《prometheus如何使用pushgateway监控网路丢包》:本文主要介绍prometheus如何使用pushgateway监控网路丢包问题,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录监控网路丢包脚本数据图表总结监控网路丢包脚本[root@gtcq-gt-monitor-prome

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

SpringBoot中如何使用Assert进行断言校验

《SpringBoot中如何使用Assert进行断言校验》Java提供了内置的assert机制,而Spring框架也提供了更强大的Assert工具类来帮助开发者进行参数校验和状态检查,下... 目录前言一、Java 原生assert简介1.1 使用方式1.2 示例代码1.3 优缺点分析二、Spring Fr

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

java使用protobuf-maven-plugin的插件编译proto文件详解

《java使用protobuf-maven-plugin的插件编译proto文件详解》:本文主要介绍java使用protobuf-maven-plugin的插件编译proto文件,具有很好的参考价... 目录protobuf文件作为数据传输和存储的协议主要介绍在Java使用maven编译proto文件的插件

SpringBoot线程池配置使用示例详解

《SpringBoot线程池配置使用示例详解》SpringBoot集成@Async注解,支持线程池参数配置(核心数、队列容量、拒绝策略等)及生命周期管理,结合监控与任务装饰器,提升异步处理效率与系统... 目录一、核心特性二、添加依赖三、参数详解四、配置线程池五、应用实践代码说明拒绝策略(Rejected