Chapter 7. Congestion Management in Ethernet Storage Networks以太网存储网络的拥塞管理 - 2

本文主要是介绍Chapter 7. Congestion Management in Ethernet Storage Networks以太网存储网络的拥塞管理 - 2,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Location of Ingress No-Drop Queues入口无损队列的位置

Ingress queues for no-drop traffic are maintained by all the ports in a lossless Ethernet network. For the sake of simplicity, Figure 7-1 shows ingress no-drop queue(s) only at one location, but in reality, all ports have ingress no-drop queue(s). 无损以太网网络中的所有端口都有入口无损队列。为简单起见,图 7-1 仅显示了一个位置的入口无损队列,但实际上所有端口都有入口无损队列。

1. Figure 7-1 already shows ingress no-drop queue(s) on Switch-1 for receiving traffic from Target-1. The utilization of this no-drop queue controls sending Pause frames to Target-1. 7-1 显示了交换机-1 上用于接收目标-1 流量的入口无损队列。利用该无损队列可控制向目标-1 发送暂停帧。

2. A similar ingress no-drop queue(s) exists on Switch-1 for receiving traffic from Host-1. The utilization of this no-drop queue controls sending Pause frames to Host-1. 交换机-1 上也有类似的入口无损队列,用于接收来自主机-1 的流量。利用该无损队列可控制向 Host-1 发送暂停帧。

3. Target-1 creates an ingress no-drop queue(s) for receiving traffic from Switch-1. The utilization of this no-drop queue controls sending Pause frames to Switch-1. 目标-1 创建一个或多个入口无损队列,用于接收来自交换机-1 的流量。利用该无损队列可控制向 Switch-1 发送暂停帧。

4. Host-1 creates an ingress no-drop queue(s) for receiving traffic from Switch-1. The utilization of this no-drop queue controls sending Pause frames to Switch-1. 主机-1 创建一个或多个入口无损队列,用于接收来自交换机-1 的流量。利用该无损队列可控制向 Switch-1 发送暂停帧。

Number of Ingress No-Drop Queues Per Port每个端口的输入无损队列数

Typically, a no-drop traffic class needs one no-drop queue per port. More one than one no-drop queue can also be created based on use cases, such as for carrying FCoE and RoCE traffic via the same link. Multiple no-drop queues have their own Pause Threshold and Resume Threshold. The maximum number of no-drop queues on a device depends on its capabilities. For example, Cisco Nexus 9000 switches support up to three no-drop queues. But there are more considerations based on the maximum frame size and length of a link. These limits apply because a no-drop queue requires buffer reservation, and every device has a finite buffer space. Refer to the documentation of the devices in your environment, but overall, be aware of these limits and plan accordingly. 通常情况下,一个无损流量类的每个端口需要一个无损队列。也可根据使用情况创建多个无损队列,如通过同一链路传输 FCoE RoCE 流量。多个无损队列有各自的 "暂停阈值 " "恢复阈值"。设备上无损队列的最大数量取决于其功能。例如,Cisco Nexus 9000 交换机最多支持三个无损队列。但根据链路的最大帧大小和长度,还需要考虑更多因素。这些限制之所以适用,是因为无损队列需要预留缓冲区,而每个设备的缓冲区空间都是有限的。请参考您环境中设备的文档,但总的来说,要了解这些限制并制定相应的计划。

Implementation Differences and The Scope of this Book实施差异和本书的范围

Some implementations, although less common, continuously send Pause frames with zero quanta when there is no congestion. In other words, they send Un-Pause frames even if their buffer utilization is less than the Resume Threshold. This is unnecessary because just one Un-Pause frame is enough to resume traffic and there is no need to send them continuously unless a Pause frame with non-zero quanta is sent in between. Although such implementations do not violate the standards, this unnecessary action makes congestion detection almost impossible when combined with the inability to report Pause and Un-Pause frames separately and the inability to report the duration of traffic pause (TxWait/RxWait). Refer to the later section on Congestion Detection Metrics for more details on these metrics. Also, Un-Pause frames that are sent continuously in large numbers may lead to a noticeable link utilization because these are actual frames that take bandwidth. This type of implementation is outside the scope of this book. Most congestion detection and troubleshooting techniques explained in this book do not apply to such implementations. 有些实现(尽管不太常见)会在没有拥塞的情况下持续发送quanta为零的暂停帧。换句话说,即使缓冲区利用率低于恢复阈值,它们也会发送取消暂停帧。这样做是不必要的,因为只需一个 "取消暂停 "帧就足以恢复流量,除非中间发送一个非零quanta的 "暂停 "帧,否则没有必要连续发送。虽然这种实现方式并不违反标准,但由于无法分别报告暂停和解除暂停帧,也无法报告流量暂停的持续时间(TxWait/RxWait),因

这篇关于Chapter 7. Congestion Management in Ethernet Storage Networks以太网存储网络的拥塞管理 - 2的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/496869

相关文章

Linux创建服务使用systemctl管理详解

《Linux创建服务使用systemctl管理详解》文章指导在Linux中创建systemd服务,设置文件权限为所有者读写、其他只读,重新加载配置,启动服务并检查状态,确保服务正常运行,关键步骤包括权... 目录创建服务 /usr/lib/systemd/system/设置服务文件权限:所有者读写js,其他

在Node.js中使用.env文件管理环境变量的全过程

《在Node.js中使用.env文件管理环境变量的全过程》Node.js应用程序通常依赖于环境变量来管理敏感信息或配置设置,.env文件已经成为一种流行的本地管理这些变量的方法,本文将探讨.env文件... 目录引言为什么使php用 .env 文件 ?如何在 Node.js 中使用 .env 文件最佳实践引

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

k8s搭建nfs共享存储实践

《k8s搭建nfs共享存储实践》本文介绍NFS服务端搭建与客户端配置,涵盖安装工具、目录设置及服务启动,随后讲解K8S中NFS动态存储部署,包括创建命名空间、ServiceAccount、RBAC权限... 目录1. NFS搭建1.1 部署NFS服务端1.1.1 下载nfs-utils和rpcbind1.1

Python实现简单封装网络请求的示例详解

《Python实现简单封装网络请求的示例详解》这篇文章主要为大家详细介绍了Python实现简单封装网络请求的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录安装依赖核心功能说明1. 类与方法概览2.NetHelper类初始化参数3.ApiResponse类属性与方法使用实

Redis高性能Key-Value存储与缓存利器常见解决方案

《Redis高性能Key-Value存储与缓存利器常见解决方案》Redis是高性能内存Key-Value存储系统,支持丰富数据类型与持久化方案(RDB/AOF),本文给大家介绍Redis高性能Key-... 目录Redis:高性能Key-Value存储与缓存利器什么是Redis?为什么选择Redis?Red

python库pydantic数据验证和设置管理库的用途

《python库pydantic数据验证和设置管理库的用途》pydantic是一个用于数据验证和设置管理的Python库,它主要利用Python类型注解来定义数据模型的结构和验证规则,本文给大家介绍p... 目录主要特点和用途:Field数值验证参数总结pydantic 是一个让你能够 confidentl

SpringBoot 多环境开发实战(从配置、管理与控制)

《SpringBoot多环境开发实战(从配置、管理与控制)》本文详解SpringBoot多环境配置,涵盖单文件YAML、多文件模式、MavenProfile分组及激活策略,通过优先级控制灵活切换环境... 目录一、多环境开发基础(单文件 YAML 版)(一)配置原理与优势(二)实操示例二、多环境开发多文件版

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

Debian 13升级后网络转发等功能异常怎么办? 并非错误而是管理机制变更

《Debian13升级后网络转发等功能异常怎么办?并非错误而是管理机制变更》很多朋友反馈,更新到Debian13后网络转发等功能异常,这并非BUG而是Debian13Trixie调整... 日前 Debian 13 Trixie 发布后已经有众多网友升级到新版本,只不过升级后发现某些功能存在异常,例如网络转