Linux NAPI ------------- epoll边缘触发模式

2023-12-15 13:01

本文主要是介绍Linux NAPI ------------- epoll边缘触发模式,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Linux处理网络数据包的一般流程

分组到达内核的时间是不可预测的。所有现代的设备驱动程序都使用中断来通知内核有分组到达。
网络驱动程序对特定于设备的中断设置了一个处理例程,因此每当该中断被引发时(即分组到达),内核都调用该处理程序,将数据从网卡传输到物理内存,或通知内核在一定时间后进行处理。
几乎所有的网卡都支持DMA模式,能够自行将数据传输到物理内存。

支持高速网络设备

每次一个以太网帧到达时,都使用一个IRQ来通知内核。 对低速设备来说,在下一个分组到达之前,IRQ的处理通常已经结束。
由于下一个分组也通过IRQ通知,如果前一个分组的IRQ尚未处理完成,则会导致问题,高速设备通常就是这样。
现代以太网卡的运作高达10 000 Mbit/s,如果使用旧式方法来驱动此类设备,将造成所谓的“中断风暴”。

NAPI原理 (类比epoll边缘触发模式)

为解决该问题,NAPI使用了IRQ和轮询的组合
假定某个网络适配器此前没有分组到达,但从现在开始,分组将以高频率频繁到达。这就是NAPI
设备的情况,如下所述。

  1. 第一个分组将导致网络适配器发出IRQ。为防止进一步的分组导致发出更多的IRQ,驱动程序 会关闭该适配器的Rx
    IRQ。并将该适配器放置到一个轮询表上。
  2. 只要适配器上还有分组需要处理,内核就一直对轮询表上的设备进行轮询。
  3. 重新启用Rx中断。

如果在新的分组到达时,旧的分组仍然处于处理过程中,工作不会因额外的中断而减速。虽然对
设备驱动程序(和一般意义上的内核代码)来说轮询通常是一个很差的方法,但在这里该方法没有什
么不利之处:在没有分组还需要处理时,将停止轮询,设备将回复到通常的IRQ驱动的运行方式。在
没有中断支持的情况下,轮询空的接收队列将不必要地浪费时间,但NAPI并非如此。
NAPI的另一个优点是可以高效地丢弃分组。如果内核确信因为有很多其他工作需要处理,而导
致无法处理任何新的分组,那么网络适配器可以直接丢弃分组,无须复制到内核。
只有设备满足如下两个条件时,才能实现NAPI方法。
(1) 设备必须能够保留多个接收的分组,例如保存到DMA环形缓冲区中。下文将该缓冲区称为Rx
缓冲区。
(2) 该设备必须能够禁用用于分组接收的IRQ。而且,发送分组或其他可能通过IRQ进行的操作,
都仍然必须是启用的

napi机制和循环轮循

循环处理所有设备

内核以循环方式处理链表上的所有设备:内核依次轮询各个设备,如果已经花费了一定的时间来
处理某个设备,则选择下一个设备进行处理。
此外,某个设备都带有一个相对权重,表示与轮询表中其他设备相比,该设备的相对重要性。较快的设备权重较大,较慢的设备权重较小。由于权重指定了在一个轮询的循环中处理多少分组,这确保了内核将更多地注意速度较快的设备。

NAPI细节

现在我们已经弄清楚了NAPI的基本原理,接下来将讨论其实现细节。
与旧的API相比,关键性的变化在于,支持NAPI的设备必须提供一个 poll 函数。
该方法是特定于设备的,在用 netif_napi_add注册网卡时指定。调用该函数注册,表明设备可以且必须用新方法处理。

<netdevice.h>
static inline void netif_napi_add(struct net_device *dev,
struct napi_struct *napi,
int (*poll)(struct napi_struct *, int),
int weight);
  • dev 指向所述设备的 net_device 实例
  • poll 指定了在IRQ禁用时用来轮询设备的函数
  • weight指定了设备接口的相对权重。实际上可以对 weight 指定任意整数值。通常10/100 Mbit网卡的驱动程序
    指定为16,而1 000/10 000 Mbit网卡的驱动程序指定为64。无论如何,权重都不能超过该设备可以在
    Rx缓冲区中存储的分组的数目。
  • netif_napi_add 还需要另一个参数,是一个指向 struct napi_struct 实例的指针。该结构用于
    管理轮询表上的设备。其定义如下:
<netdevice.h>
struct napi_struct {
struct list_head poll_list;
unsigned long state;
int weight;
int (*poll)(struct napi_struct *, int);
};

轮询表通过一个标准的内核双链表实现, poll_list 用作链表元素。
weight 和 poll 的语义同上文所述。
state 可以是 NAPI_STATE_SCHED 或 NAPI_STATE_DISABLE ,前者表示设备将在内核的下一次循
环时被轮询,后者表示轮询已经结束且没有更多的分组等待处理,但设备尚未从轮询表移除。
请注意,struct napi_struct 经常嵌入到一个更大的结构中,后者包含了与网卡有关的、特定
于驱动程序的数据。这样在内核使用 poll 函数轮询网卡时,可用 container_of 机制获得相关信息。

实现 poll 函数

poll 函数需要两个参数:一个指向 napi_struct 实例的指针和一个指定了“预算”的整数,预算
表示内核允许驱动程序处理的分组数目。我们并不打算处理真实网卡的可能的奇异之处,因此讨论一
个伪函数,该函数用于一个需要NAPI的超高速适配器:

static int hyper_card_poll(struct napi_struct *napi, int budget)
{struct nic *nic = container_of(napi, struct nic, napi);struct net_device *netdev = nic->netdev;int work_done;work_done = hyper_do_poll(nic, budget);if (work_done < budget) {netif_rx_complete(netdev, napi);hcard_reenable_irq(nic);}return work_done;
}

在从 napi_struct 的容器获得特定于设备的信息之后,调用一个特定于硬件的方法(这里是
hyper_do_poll )来执行所需要的底层操作从网络适配器获取分组,并使用像此前那样使用
netif_receive_skb 将分组传递到网络实现中更高的层。

hyper_do_poll 最多允许处理 budget 个分组。
该函数返回实际上处理的分组的数目。必须区分以下两种情况。

  1. 如果处理分组的数目小于预算,那么没有更多的分组,Rx缓冲区为空,否则,肯定还需要处
    理剩余的分组(亦即,返回值不可能小于预算)。因此, netif_rx_complete 将该情况通知内
    核,内核将从轮询表移除该设备。接下来,驱动程序必须通过特定于硬件的适当方法来重新 启用IRQ。
  2. 已经完全用掉了预算,但仍然有更多的分组需要处理。设备仍然留在轮询表上,不启用中断。
实现IRQ处理程序

NAPI也需要对网络设备的IRQ处理程序做一些改动。这里仍然不求助于任何具体的硬件,而介绍
针对虚构设备的代码:

static irqreturn_t e100_intr(int irq, void *dev_id)
{struct net_device *netdev = dev_id;struct nic *nic = netdev_priv(netdev);if(likely(netif_rx_schedule_prep(netdev, &nic->napi))) {hcard_disable_irq(nic);__netif_rx_schedule(netdev, &nic->napi);}return IRQ_HANDLED;
}

假定特定于接口的数据保存在 net_device->private 中,这是大多数网卡驱动程序使用的方法。
使用辅助函数 netdev_priv 访问该字段。
现在需要通知内核有新的分组可用。这需要如下二阶段的方法。

  1. netif_rx_schedule_prep 准备将设备放置到轮询表上。本质上,这会安置 napi_struct-> flags
    中的 NAPI_STATE_SCHED 标志。
  2. 如果设置该标志成功(仅当NAPI已经处于活跃状态时,才会失败),驱动程序必须用特定于设 备的适当方法来禁用相应的IRQ。调用
    __netif_rx_schedule 将设备的 napi_struct 添加到轮询表, 并引发软中断 NET_RX_SOFTIRQ 。这通知内核在 net_rx_action 中开始轮询
处理Rx软中断

在讨论了为支持NAPI驱动程序需要做哪些改动之后,我们来考察一下内核需要承担的职责。
net_rx_action 依旧是软中断 NET_RX_SOFTIRQ 的处理程序。
下图给出了其代码流程图:

net_rx_action流程图
本质上,内核通过依次调用各个设备特定的 poll 方法,处理轮询表上当前的所有设备。设备的权
重用作该设备本身的预算,即轮询的一步中可能处理的分组数目。
必须确保在这个软中断的处理程序中,不会花费过多时间。如果如下两个条件成立,则放弃处理。

  1. 处理程序已经花费了超出一个 jiffie 的时间。
  2. 所处理分组的总数,已经超过了 netdev_budget 指定的预算总值。通常,总值设置为300,但 可以通过
    /proc/sys/net/core/netdev_budget 修改。

这个预算不能与各个网络设备本身的预算混淆!在每个轮询步之后,都从全局预算中减去处理的
分组数目,如果该预算值下降到0,则退出软中断处理程序。
在轮询了一个设备之后,内核会检查所处理的分组数目,与该设备的预算是否相等。如果相等,
那么尚未获得该设备上所有等待的分组,即代码流程图中 work == weight 所表示的情况。内核接下
来将该设备移动到轮询表末尾,在链表中所有其他设备都处理过之后,继续轮询该设备。显然,这实
现了网络设备之间的循环调度。

这篇关于Linux NAPI ------------- epoll边缘触发模式的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/496544

相关文章

linux hostname设置全过程

《linuxhostname设置全过程》:本文主要介绍linuxhostname设置全过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录查询hostname设置步骤其它相关点hostid/etc/hostsEDChina编程A工具license破解注意事项总结以RHE

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

Java设计模式---迭代器模式(Iterator)解读

《Java设计模式---迭代器模式(Iterator)解读》:本文主要介绍Java设计模式---迭代器模式(Iterator),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录1、迭代器(Iterator)1.1、结构1.2、常用方法1.3、本质1、解耦集合与遍历逻辑2、统一

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操

Linux中SSH服务配置的全面指南

《Linux中SSH服务配置的全面指南》作为网络安全工程师,SSH(SecureShell)服务的安全配置是我们日常工作中不可忽视的重要环节,本文将从基础配置到高级安全加固,全面解析SSH服务的各项参... 目录概述基础配置详解端口与监听设置主机密钥配置认证机制强化禁用密码认证禁止root直接登录实现双因素

在Linux终端中统计非二进制文件行数的实现方法

《在Linux终端中统计非二进制文件行数的实现方法》在Linux系统中,有时需要统计非二进制文件(如CSV、TXT文件)的行数,而不希望手动打开文件进行查看,例如,在处理大型日志文件、数据文件时,了解... 目录在linux终端中统计非二进制文件的行数技术背景实现步骤1. 使用wc命令2. 使用grep命令

Linux如何快速检查服务器的硬件配置和性能指标

《Linux如何快速检查服务器的硬件配置和性能指标》在运维和开发工作中,我们经常需要快速检查Linux服务器的硬件配置和性能指标,本文将以CentOS为例,介绍如何通过命令行快速获取这些关键信息,... 目录引言一、查询CPU核心数编程(几C?)1. 使用 nproc(最简单)2. 使用 lscpu(详细信

linux重启命令有哪些? 7个实用的Linux系统重启命令汇总

《linux重启命令有哪些?7个实用的Linux系统重启命令汇总》Linux系统提供了多种重启命令,常用的包括shutdown-r、reboot、init6等,不同命令适用于不同场景,本文将详细... 在管理和维护 linux 服务器时,完成系统更新、故障排查或日常维护后,重启系统往往是必不可少的步骤。本文

基于Linux的ffmpeg python的关键帧抽取

《基于Linux的ffmpegpython的关键帧抽取》本文主要介绍了基于Linux的ffmpegpython的关键帧抽取,实现以按帧或时间间隔抽取关键帧,文中通过示例代码介绍的非常详细,对大家的学... 目录1.FFmpeg的环境配置1) 创建一个虚拟环境envjavascript2) ffmpeg-py

Redis Cluster模式配置

《RedisCluster模式配置》:本文主要介绍RedisCluster模式配置,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录分片 一、分片的本质与核心价值二、分片实现方案对比 ‌三、分片算法详解1. ‌范围分片(顺序分片)‌2. ‌哈希分片3. ‌虚