3D LUT 滤镜 shader 源码分析

2023-12-14 13:10
文章标签 分析 源码 3d shader 滤镜 lut

本文主要是介绍3D LUT 滤镜 shader 源码分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近在做滤镜相关的渲染学习,目前大部分 LUT 滤镜代码实现都是参考由 GPUImage 提供的 LookupFilter 的逻辑,整个代码实现不多。参考网上的博文也有各种解释,参考了大量博文之后终于理解了,所以自己重新整理了一份,方便以后阅读理解,对整体代码的实现过程结合LUT的原理进行一个简单整理。

GPUImageLookupFilter shader 源码

 varying highp vec2 textureCoordinate;      varying highp vec2 textureCoordinate2;uniform sampler2D inputImageTexture;  // 目标纹理,对应原始资源uniform sampler2D inputImageTexture2; // 查找表纹理,对应LUT图片uniform lowp float intensity;void main(){//获取原始图层颜色highp vec4 textureColor = texture2D(inputImageTexture, textureCoordinate);//获取蓝色通道颜色,textureColor.b 的范围为(0,1),blueColor 范围为(0,63) highp float blueColor = textureColor.b * 63.0;//quad1为查找颜色所在左边位置的小正方形highp vec2 quad1;quad1.y = floor(floor(blueColor) / 8.0);quad1.x = floor(blueColor) - (quad1.y * 8.0);//quad2为查找颜色所在右边位置的小正方形highp vec2 quad2;quad2.y = floor(ceil(blueColor) / 8.0);quad2.x = ceil(blueColor) - (quad2.y * 8.0);//获取到左边小方形里面的颜色值highp vec2 texPos1;texPos1.x = (quad1.x * 0.125) + 0.5/512.0 + ((0.125 - 1.0/512.0) * textureColor.r);texPos1.y = (quad1.y * 0.125) + 0.5/512.0 + ((0.125 - 1.0/512.0) * textureColor.g);//获取到右边小方形里面的颜色值highp vec2 texPos2;texPos2.x = (quad2.x * 0.125) + 0.5/512.0 + ((0.125 - 1.0/512.0) * textureColor.r);texPos2.y = (quad2.y * 0.125) + 0.5/512.0 + ((0.125 - 1.0/512.0) * textureColor.g);//获取对应位置纹理的颜色 RGBA 值lowp vec4 newColor1 = texture2D(inputImageTexture2, texPos1);lowp vec4 newColor2 = texture2D(inputImageTexture2, texPos2);//真正的颜色是 newColor1 和 newColor2 的混合lowp vec4 newColor = mix(newColor1, newColor2, fract(blueColor));gl_FragColor = mix(textureColor, vec4(newColor.rgb, textureColor.w), intensity);}

整个源码的主要逻辑为:查找颜色所在位置的小正方形、查找小正方形内的具体颜色、颜色混合。上面注释已将具体的实现过程描述清楚,但与我们的 LUT 图片割裂,接下来结合 LUT 的实现原理以及具体的数据来形象地描述整个实现流程。

假设我们输入的参数为:
textureColor = ver4(.0, .0, 0.5, 1.0)

查找颜色所在位置的小正方形

我们知道LUT有64个小正方形,目标是为了找到对应小正方形里面的对应的颜色,我们需要先确认是第几个小正方形,正是通过 textureColor.b * 63 查找

带入blueColor -> textureColor.b = 0.5
textureColor.b * 63.0 = 31.5

也就是说我们需要第 [31.5] 位置小正方形,但是索引(从0-63共64个)都是正数,对于 31.5 索引 我们该怎么确定是 31 还是第 32 个呢?GPUImage给出的一种插值方式就是两个都要,然后进行一次混合,从而使得值能够俊均匀的在两个小正方形色块中。

具体逻辑为:

quad1.y = floor(floor(blueColor) / 8.0) = 3,确定为小方块在纵坐标索引3,也就是第4行。

quad1.x = floor(blueColor) - (quad1.y * 8.0) = 31 - 24 = 7

也就确定了小方块为(3,7) 也就是第4排第8个。

同理,对于第2个小方块确定的位置为(4,0) 也就是第5排第1个。

quad2.y = floor(ceil(blueColor) / 8.0) = 4

quad2.x = ceil(blueColor) - (quad2.y * 8.0)= 0

查找小正方形内的具体颜色

已经获取到对应的方块了,接下来需要确定方块内的像素的位置了。一般一个LUT的大小为 512x512,由8x8小方块构成,也就是每个方块的的像素为64x64,如下图所示:

计算x坐标的逻辑为:

texPos1.x = (quad1.x * 0.125) + 0.5/512.0 + ((0.125 - 1.0/512.0) * textureColor.r)

这一段是相对比较难理解的,我们可以分几部分进行理解:

第一部分:(quad1.x * 0.125)

我们得到 quad1.x = 7,也就是第8列,*0.125将坐标转化在(0,1)之间,也就是得到在01坐标系内如图红线的位置。

第二部分:((0.125 - 1.0/512.0) * textureColor.r)

我们可以把它当成 (63.0/512.0)* textureColor.r , 63.0/512.0代表着一个512x512中每个小方块的64份数据(为什么是63?别忘了0的存在),textureColor.r 数据在 0-1之间,这样就能确认在第一部分结果基础之上的偏移值。

第三部分:0.5/512.0

这一部分主要是 +0.5 做四舍五入运算,为保证第512行取到的是511.5/512,第1行取到的是 0.5/512.0。

同理,计算y的坐标,以及计算另一个小正方形内的位置是一样的。

最后在通过对从两个小正方形获取到的颜色进行 mix,并返回给着色器,GPU再对原始图像进行每一个像素点绘制,从而实现滤镜的效果。

总结

LUT 对应的 Shader 执行过程主要为:查找颜色所在位置的小正方形、查找小正方形内的具体颜色、颜色混合,整个流程都比较好理解,但代码相对而言比较难理解,网上看了很多其他的大佬写的一些文章,最开始自己看的时候也是很难理解的,后面终于悟了,所以想通过自己的理解,尽力更形象地解释(虽然可能也没有很形象),如果还有什么疑问,欢迎一起交流学习。

这篇关于3D LUT 滤镜 shader 源码分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/492641

相关文章

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

Java中最全最基础的IO流概述和简介案例分析

《Java中最全最基础的IO流概述和简介案例分析》JavaIO流用于程序与外部设备的数据交互,分为字节流(InputStream/OutputStream)和字符流(Reader/Writer),处理... 目录IO流简介IO是什么应用场景IO流的分类流的超类类型字节文件流应用简介核心API文件输出流应用文

java 恺撒加密/解密实现原理(附带源码)

《java恺撒加密/解密实现原理(附带源码)》本文介绍Java实现恺撒加密与解密,通过固定位移量对字母进行循环替换,保留大小写及非字母字符,由于其实现简单、易于理解,恺撒加密常被用作学习加密算法的入... 目录Java 恺撒加密/解密实现1. 项目背景与介绍2. 相关知识2.1 恺撒加密算法原理2.2 Ja

Nginx屏蔽服务器名称与版本信息方式(源码级修改)

《Nginx屏蔽服务器名称与版本信息方式(源码级修改)》本文详解如何通过源码修改Nginx1.25.4,移除Server响应头中的服务类型和版本信息,以增强安全性,需重新配置、编译、安装,升级时需重复... 目录一、背景与目的二、适用版本三、操作步骤修改源码文件四、后续操作提示五、注意事项六、总结一、背景与

Android实现图片浏览功能的示例详解(附带源码)

《Android实现图片浏览功能的示例详解(附带源码)》在许多应用中,都需要展示图片并支持用户进行浏览,本文主要为大家介绍了如何通过Android实现图片浏览功能,感兴趣的小伙伴可以跟随小编一起学习一... 目录一、项目背景详细介绍二、项目需求详细介绍三、相关技术详细介绍四、实现思路详细介绍五、完整实现代码