(完全背包)小P寻宝记——好基友一起走

2023-12-14 07:38

本文主要是介绍(完全背包)小P寻宝记——好基友一起走,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目描述

话说,上次小P到伊利哇呀国旅行得到了一批宝藏。他是相当开心啊,回来就告诉了他的好基友小鑫,于是他们又结伴去伊利哇呀国寻宝。
这次小P的寻宝之路可没有那么的轻松,他们走到了一个森林,小鑫一不小心被触发了机关,被困在了一个大笼子里面,笼子旁边上有一道题目和一个密码锁,上面说只要解出此题输入密码即可救出被困人。小鑫不是很聪明,所以他做不出来,他知道小P很笨,更解不出来。所以他就让小P独自回去,不用管他。但是小P重情重义不会抛弃他离去。他说:“不,好基友一起走!”。于是就感动了上帝,上帝特派你来替他们解决问题。聪明的你要加油了啊!
题目描述:给你n种物品和一个体积为v的包包。每种物品有无数种,体积是vi价值是wi。求出包包v所能装的最大价值的东西。

输入

多组输入。第一行有两个正整数n(0<n<=10000), v(0<v<= 10000)。接下来两行每行有n个数字。第一行表示每种物品的价值wi(0<wi<100),第二行表示每种物品的体积vi(0<vi<100)。

输出

输出最多可以得到的价值。输出结果救出小鑫。

示例输入

5 20
1 2 3 4 5
2 6 3 5 4

示例输出

25

///完全背包,代码和01背包差不多,就是将for循环中j从m到0改为从0到m

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
#define N 10010
int dp[N];
int max(int a,int b)
{if(a>=b)return a;elsereturn b;
}
int main()
{int n,m,i,j;int wi[N],pi[N];while(~scanf("%d%d",&n,&m)){for(i=0;i<=n-1;i++){scanf("%d",&pi[i]);}for(i=0;i<=n-1;i++){scanf("%d",&wi[i]);}for(i=0;i<=m;i++){dp[i]=0;}for(i=0;i<=n-1;i++){for(j=0;j<=m;j++){if(j>=wi[i]){dp[j]=max(dp[j],dp[j-wi[i]]+pi[i]);}}}printf("%d\n",dp[m]);}return 0;
}


这篇关于(完全背包)小P寻宝记——好基友一起走的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/491692

相关文章

Python使用Reflex构建现代Web应用的完全指南

《Python使用Reflex构建现代Web应用的完全指南》这篇文章为大家深入介绍了Reflex框架的设计理念,技术特性,项目结构,核心API,实际开发流程以及与其他框架的对比和部署建议,感兴趣的小伙... 目录什么是 ReFlex?为什么选择 Reflex?安装与环境配置构建你的第一个应用核心概念解析组件

Python日期和时间完全指南与实战

《Python日期和时间完全指南与实战》在软件开发领域,‌日期时间处理‌是贯穿系统设计全生命周期的重要基础能力,本文将深入解析Python日期时间的‌七大核心模块‌,通过‌企业级代码案例‌揭示最佳实践... 目录一、背景与核心价值二、核心模块详解与实战2.1 datetime模块四剑客2.2 时区处理黄金法

Android NDK版本迭代与FFmpeg交叉编译完全指南

《AndroidNDK版本迭代与FFmpeg交叉编译完全指南》在Android开发中,使用NDK进行原生代码开发是一项常见需求,特别是当我们需要集成FFmpeg这样的多媒体处理库时,本文将深入分析A... 目录一、android NDK版本迭代分界线二、FFmpeg交叉编译关键注意事项三、完整编译脚本示例四

Linux find 命令完全指南及核心用法

《Linuxfind命令完全指南及核心用法》find是Linux系统最强大的文件搜索工具,支持嵌套遍历、条件筛选、执行动作,下面给大家介绍Linuxfind命令完全指南,感兴趣的朋友一起看看吧... 目录一、基础搜索模式1. 按文件名搜索(精确/模糊匹配)2. 排除指定目录/文件二、根据文件类型筛选三、时间

JavaScript中的Map用法完全指南

《JavaScript中的Map用法完全指南》:本文主要介绍JavaScript中Map用法的相关资料,通过实例讲解了Map的创建、常用方法和迭代方式,还探讨了Map与对象的区别,并通过一个例子展... 目录引言1. 创建 Map2. Map 和对象的对比3. Map 的常用方法3.1 set(key, v

poj2576(二维背包)

题意:n个人分成两组,两组人数只差小于1 , 并且体重只差最小 对于人数要求恰好装满,对于体重要求尽量多,一开始没做出来,看了下解题,按照自己的感觉写,然后a了 状态转移方程:dp[i][j] = max(dp[i][j],dp[i-1][j-c[k]]+c[k]);其中i表示人数,j表示背包容量,k表示输入的体重的 代码如下: #include<iostream>#include<

hdu2159(二维背包)

这是我的第一道二维背包题,没想到自己一下子就A了,但是代码写的比较乱,下面的代码是我有重新修改的 状态转移:dp[i][j] = max(dp[i][j], dp[i-1][j-c[z]]+v[z]); 其中dp[i][j]表示,打了i个怪物,消耗j的耐力值,所得到的最大经验值 代码如下: #include<iostream>#include<algorithm>#include<

csu(背包的变形题)

题目链接 这是一道背包的变形题目。好题呀 题意:给n个怪物,m个人,每个人的魔法消耗和魔法伤害不同,求打死所有怪物所需的魔法 #include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>//#include<u>#include<map

hdu1011(背包树形DP)

没有完全理解这题, m个人,攻打一个map,map的入口是1,在攻打某个结点之前要先攻打其他一个结点 dp[i][j]表示m个人攻打以第i个结点为根节点的子树得到的最优解 状态转移dp[i][ j ] = max(dp[i][j], dp[i][k]+dp[t][j-k]),其中t是i结点的子节点 代码如下: #include<iostream>#include<algorithm

hdu1171(母函数或多重背包)

题意:把物品分成两份,使得价值最接近 可以用背包,或者是母函数来解,母函数(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v) 其中指数为价值,每一项的数目为(该物品数+1)个 代码如下: #include<iostream>#include<algorithm>