opencv 十五 红外图像中虹膜的提取

2023-12-14 04:44

本文主要是介绍opencv 十五 红外图像中虹膜的提取,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、算法需求

在医疗检测中,需要使用红外相机拍摄眼睛照片,然后提取出虹膜的区域。在拍摄过程瞳孔需要进行运动,其通常不在正前方,无法形成圆形,不能使用常规的霍夫圆检测进行提取定位。且在在红外图像中,虹膜区域与巩膜区域差别不明显(具体如下图所示),故需要设计出算法提取红外图像中的虹膜区域。
在这里插入图片描述

1.1 眼睛结构说明

虹膜为圆盘状膜,中央有一黑孔称瞳孔,具体如下图所示。如果光线过强,虹膜内瞳孔括约肌收缩,则瞳孔缩小;光线变弱,虹膜开大肌收缩,瞳孔变大。
在这里插入图片描述

1.2 现有方法简述

通常使用霍夫圆检测实现瞳孔定位,具体实现效果如下所示。
在这里插入图片描述
其先通过二值化方法,获取瞳孔区域(包含闭运算操作,使瞳孔的圆闭合【瞳孔经常出现反光的情况】),最后在对瞳孔区域进行霍夫圆检测。

参考链接:https://blog.csdn.net/cungudafa/article/details/119726505

使用opencv的椭圆检测进行定位时发现以下情况,当瞳孔运动到眼球边缘时,其无法准确的检测到瞳孔(霍夫圆检测的黄色圆与瞳孔区域没有严格的贴合)。
在这里插入图片描述
使用椭圆拟合则可以准确的圈出瞳孔区域
在这里插入图片描述

二、问题分析

对现有的多个数据进行分析发现,眼球照片有以下特点:
1、在红外图像中虹膜与巩膜区域没有显著性差异性===》不可以使用现有虹膜提取方法
2、虹膜以瞳孔为中心,跟随瞳孔运动方向进行同步移动===》可以将虹膜提取转化为瞳孔提取

三、核心思路

1、读取图片为灰度图,并优化图像质量(使用滤波尽可能减少图像背景的复杂度)
2、对图像进行二值化(其可以根据调试效果设置二值化阈值,瞳孔区域与眼球其他区域存在显著的颜色差异)
3、对瞳孔区域进行优化(使用闭运算移除瞳孔中的反光区域)
4、获取图像中的轮廓,并进行椭圆拟合,并根据拟合结果排除错误的椭圆(根据拟合椭圆长轴与短轴值判定)
5、根据瞳孔与虹膜的半径比假定虹膜的椭圆轴长绘制椭圆mask,在原图中截取出虹膜区域。

四、具体实现

读取后的图片如下所示
在这里插入图片描述
进行二值化后得到以下图像,可以看到瞳孔中存在黑洞,其他区域存在白色干扰点。
在这里插入图片描述
先找到图像中最大面积的连通域,然后进行闭运算,最终得到的结果如下所示
在这里插入图片描述
然后获取轮廓并进行椭圆拟合,然后将拟合的椭圆绘制在原图与mask上(画在原图上的椭圆要使用原始值,而画在mask上的椭圆需要对长轴和短轴值进行放大,使其能尽可能的盖住虹膜区域)在这里插入图片描述
使用mask与原图进行与运算可以得到以下结果
在这里插入图片描述
根据连通域获取外接矩形,将虹膜区域裁剪出来得到以下图片
在这里插入图片描述

五、完整代码

完整代码如下所示

import numpy as np
import cv2
from matplotlib import pyplot as plt
import osdef find_topK_areo(img,k=1):ret,result=cv2.threshold(img,128,255,cv2.THRESH_BINARY)contours, hierarchy = cv2.findContours(result,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)#找到最大面积连通域areos=[]for i in range(len(contours)):area = cv2.contourArea(contours[i])areos.append({'area':area,'id':i})areos.sort(key=lambda x:x['area'],reverse=True)topk_areo=areos[:k]black=np.zeros(result.shape,np.uint8)for f in topk_areo:cv2.drawContours(black,contours,f['id'],(255,255,255),-1)return blackdef getHoughCircle(img):blur = cv2.GaussianBlur(img, (3, 3), 5) # 高斯模糊,给出高斯模糊矩阵和标准差gray = cv2.cvtColor(blur, cv2.COLOR_BGR2GRAY)# 灰度化# 图像二值化,全局自适应阈值:对输入的单通道矩阵逐像素进行阈值分割#ret, binary = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_TRIANGLE)ret,binary=cv2.threshold(gray, 50, 255, cv2.THRESH_BINARY_INV)dst=find_topK_areo(binary,1)kernel=np.ones((3,3),np.uint8)dst_close=cv2.morphologyEx(dst, cv2.MORPH_CLOSE, kernel)cnt, hierarchy = cv2.findContours(dst_close, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)print(len(cnt))  #   得到该图中总的轮廓数量mask= np.zeros(dst.shape, np.uint8 )#生成全黑的maskfor i in range(len(cnt)):# 椭圆拟合#(x, y)代表椭圆中心点的位置,(a, b)代表长短轴长度,应注意a、b为长短轴的直径,而非半径,angle 代表了中心旋转的角度ellipse= cv2.fitEllipse(cnt[i])(cx, cy), (a, b), angle=ellipseprint((cx, cy), (a, b), angle) #椭圆拟合结果有一些非瞳孔区域,需要跳过。经过观察,其a与b的值特别小if a+b<40:continue# 绘制椭圆,使用ellipse(img, ellipse,color, 2)方法,不要使用另外一种多参数的用法cv2.ellipse(img, ellipse,(0,0,255), 2)cv2.drawContours(img,cnt,i,(0,0,255),1)#将椭圆区域进行放大,使其转换虹膜的mask圆ellipse=((cx, cy), (a*2.5, b*2.5), angle)cv2.ellipse(mask, ellipse,(255,255,255), -1)res=cv2.bitwise_and(gray,mask) #与灰度图进行与运算,提取目标区域(虹膜)contours, _ = cv2.findContours(mask,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)for cont in contours:# 外接矩形x, y, w, h = cv2.boundingRect(cont)#裁剪出椭圆区域crop=res[y:y+h,x:x+w]return crop if __name__=="__main__":path = 'vedio/tor3.avi/'crop1=getHoughCircle(cv2.imread(path+'tor3.avi1.jpg',1))cv2.imshow('crop',crop1)cv2.waitKey(0)

这篇关于opencv 十五 红外图像中虹膜的提取的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/491191

相关文章

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

Java使用正则提取字符串中的内容的详细步骤

《Java使用正则提取字符串中的内容的详细步骤》:本文主要介绍Java中使用正则表达式提取字符串内容的方法,通过Pattern和Matcher类实现,涵盖编译正则、查找匹配、分组捕获、数字与邮箱提... 目录1. 基础流程2. 关键方法说明3. 常见场景示例场景1:提取所有数字场景2:提取邮箱地址4. 高级

Python 字符串裁切与提取全面且实用的解决方案

《Python字符串裁切与提取全面且实用的解决方案》本文梳理了Python字符串处理方法,涵盖基础切片、split/partition分割、正则匹配及结构化数据解析(如BeautifulSoup、j... 目录python 字符串裁切与提取的完整指南 基础切片方法1. 使用切片操作符[start:end]2

使用Python提取PDF大纲(书签)的完整指南

《使用Python提取PDF大纲(书签)的完整指南》PDF大纲(Outline)​​是PDF文档中的导航结构,通常显示在阅读器的侧边栏中,方便用户快速跳转到文档的不同部分,大纲通常以层级结构组织,包含... 目录一、PDF大纲简介二、准备工作所需工具常见安装问题三、代码实现完整代码核心功能解析四、使用效果控

Linux从文件中提取特定内容的实用技巧分享

《Linux从文件中提取特定内容的实用技巧分享》在日常数据处理和配置文件管理中,我们经常需要从大型文件中提取特定内容,本文介绍的提取特定行技术正是这些高级操作的基础,以提取含有1的简单需求为例,我们可... 目录引言1、方法一:使用 grep 命令1.1 grep 命令基础1.2 命令详解1.3 高级用法2

OpenCV在Java中的完整集成指南分享

《OpenCV在Java中的完整集成指南分享》本文详解了在Java中集成OpenCV的方法,涵盖jar包导入、dll配置、JNI路径设置及跨平台兼容性处理,提供了图像处理、特征检测、实时视频分析等应用... 目录1. OpenCV简介与应用领域1.1 OpenCV的诞生与发展1.2 OpenCV的应用领域2

Python实现批量提取BLF文件时间戳

《Python实现批量提取BLF文件时间戳》BLF(BinaryLoggingFormat)作为Vector公司推出的CAN总线数据记录格式,被广泛用于存储车辆通信数据,本文将使用Python轻松提取... 目录一、为什么需要批量处理 BLF 文件二、核心代码解析:从文件遍历到数据导出1. 环境准备与依赖库

在Java中使用OpenCV实践

《在Java中使用OpenCV实践》用户分享了在Java项目中集成OpenCV4.10.0的实践经验,涵盖库简介、Windows安装、依赖配置及灰度图测试,强调其在图像处理领域的多功能性,并计划后续探... 目录前言一 、OpenCV1.简介2.下载与安装3.目录说明二、在Java项目中使用三 、测试1.测

基于Python开发一个图像水印批量添加工具

《基于Python开发一个图像水印批量添加工具》在当今数字化内容爆炸式增长的时代,图像版权保护已成为创作者和企业的核心需求,本方案将详细介绍一个基于PythonPIL库的工业级图像水印解决方案,有需要... 目录一、系统架构设计1.1 整体处理流程1.2 类结构设计(扩展版本)二、核心算法深入解析2.1 自