TPH-YOLOv5: 基于Transformer预测头的改进YOLOv5用于无人机捕获场景目标检测

本文主要是介绍TPH-YOLOv5: 基于Transformer预测头的改进YOLOv5用于无人机捕获场景目标检测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        代码链接:GitHub - cv516Buaa/tph-yolov5

        如果进入不了github,就在这里下载,没有权重(免费的): https://download.csdn.net/download/weixin_44911037/86823848

        这是一篇针对无人机小目标算法比赛后写的论文,无人机捕获场景下的目标检测是近年来的热门课题。由于无人机总是在不同的高度上飞行,目标尺度变化剧烈,给网络优化带来了负担。此外,高速和低空飞行会使密集的物体产生运动模糊,这对目标识别带来了很大的挑战,如下图所示是无人机拍摄的场景,我们可以看出无人机拍摄的图片尺度变化确实非常大。

        

        在VisDrone2021测试挑战数据集上,提出的TPH-YOLOv5达到39.18% (AP),比DPNetV3(之前的SOTA方法)高出1.81%。在VisDrone2021 DET挑战赛中,TPH-YOLOv5获得第5名,与第一名相比差距不大。

        这篇文章所做的贡献在于:1、增加了一个检测头,用于更好地检测小目标,这是很多学者解决小目标的基本操作,但是这种操作会给模型行整体增加计算量。2、利用Transformer来更改原来yolov5的检测头,个人认为这部分是这篇比赛论文比较大的创新点,算是把Transformer和CNN结合起来。3、引入CBAM注意力机制模块,这部分算是一个比较常规的操作,毕竟注意力机制在目标检测中的作用还是比较大的,当然要放在合适的地方。4、提供了一些有用的策略,比如说数据增强,例如数据增强,多尺度测试(这种方法在第一定程度会增加最终的mAP)、使用了额外的分类器。5.使用了自训练分类器来提高对一些混淆类别的分类能力(这是针对相似车但是属于不同的类)。

 在这篇文章中,对于最后预测后处理使用集成的方式,我们可以从图中可以看出,他使用WBF和NMS的集成方式,对于WBF我在下图给出解释,相当于另外生成一种加权后的预测框,想了解更深可以看论文:https://arxiv.org/abs/1910.13302,当然具体怎么集成的还是需要看代码才能准确知道,后面有时间再看。

        至于网络模型的具体结构,如上图所示,在特征增强(NECK)中使用了Transfromer 的结构,因为transformer能够获得更大的感受。其实在一部分我还是比较困惑的,就是将3维的特征变成二维再转变成3维的不嫌麻烦吗?又或者这里面的结构数据会不会发生某种变化,当然这是我一直困惑的事情,我后面好好看看代码,看看它的模型结构。具体代码就是下面的。将特征层转成向量再转成特征层。

class TransformerBlock(nn.Module):# Vision Transformer https://arxiv.org/abs/2010.11929def __init__(self, c1, c2, num_heads, num_layers):super().__init__()self.conv = Noneif c1 != c2:self.conv = Conv(c1, c2)self.linear = nn.Linear(c2, c2)  # learnable position embeddingself.tr = nn.Sequential(*(TransformerLayer(c2, num_heads) for _ in range(num_layers)))self.c2 = c2def forward(self, x):if self.conv is not None:x = self.conv(x)b, _, w, h = x.shapep = x.flatten(2).unsqueeze(0).transpose(0, 3).squeeze(3)return self.tr(p + self.linear(p)).unsqueeze(3).transpose(0, 3).reshape(b, self.c2, w, h)

         下面是就是一般的Transformer的编码结构。

        总体来说,这篇文章给我的一些参考意见就是使用Transformer来对小目标检测。

class TransformerLayer(nn.Module):def __init__(self, c, num_heads):super().__init__()self.ln1 = nn.LayerNorm(c)self.q = nn.Linear(c, c, bias=False)self.k = nn.Linear(c, c, bias=False)self.v = nn.Linear(c, c, bias=False)self.ma = nn.MultiheadAttention(embed_dim=c, num_heads=num_heads)self.ln2 = nn.LayerNorm(c)self.fc1 = nn.Linear(c, 4*c, bias=False)self.fc2 = nn.Linear(4*c, c, bias=False)self.dropout = nn.Dropout(0.1)self.act = nn.ReLU(True)def forward(self, x):x_ = self.ln1(x)x = self.dropout(self.ma(self.q(x_), self.k(x_), self.v(x_))[0]) + xx_ = self.ln2(x)x_ = self.fc2(self.dropout(self.act(self.fc1(x_))))x = x + self.dropout(x_)return x

这篇关于TPH-YOLOv5: 基于Transformer预测头的改进YOLOv5用于无人机捕获场景目标检测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/491106

相关文章

MySQL常用字符串函数示例和场景介绍

《MySQL常用字符串函数示例和场景介绍》MySQL提供了丰富的字符串函数帮助我们高效地对字符串进行处理、转换和分析,本文我将全面且深入地介绍MySQL常用的字符串函数,并结合具体示例和场景,帮你熟练... 目录一、字符串函数概述1.1 字符串函数的作用1.2 字符串函数分类二、字符串长度与统计函数2.1

Java Stream流之GroupBy的用法及应用场景

《JavaStream流之GroupBy的用法及应用场景》本教程将详细介绍如何在Java中使用Stream流的groupby方法,包括基本用法和一些常见的实际应用场景,感兴趣的朋友一起看看吧... 目录Java Stream流之GroupBy的用法1. 前言2. 基础概念什么是 GroupBy?Stream

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

C++中detach的作用、使用场景及注意事项

《C++中detach的作用、使用场景及注意事项》关于C++中的detach,它主要涉及多线程编程中的线程管理,理解detach的作用、使用场景以及注意事项,对于写出高效、安全的多线程程序至关重要,下... 目录一、什么是join()?它的作用是什么?类比一下:二、join()的作用总结三、join()怎么

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

nginx -t、nginx -s stop 和 nginx -s reload 命令的详细解析(结合应用场景)

《nginx-t、nginx-sstop和nginx-sreload命令的详细解析(结合应用场景)》本文解析Nginx的-t、-sstop、-sreload命令,分别用于配置语法检... 以下是关于 nginx -t、nginx -s stop 和 nginx -s reload 命令的详细解析,结合实际应

Linux系统性能检测命令详解

《Linux系统性能检测命令详解》本文介绍了Linux系统常用的监控命令(如top、vmstat、iostat、htop等)及其参数功能,涵盖进程状态、内存使用、磁盘I/O、系统负载等多维度资源监控,... 目录toppsuptimevmstatIOStatiotopslabtophtopdstatnmon

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

MyBatis-Plus 中 nested() 与 and() 方法详解(最佳实践场景)

《MyBatis-Plus中nested()与and()方法详解(最佳实践场景)》在MyBatis-Plus的条件构造器中,nested()和and()都是用于构建复杂查询条件的关键方法,但... 目录MyBATis-Plus 中nested()与and()方法详解一、核心区别对比二、方法详解1.and()

ModelMapper基本使用和常见场景示例详解

《ModelMapper基本使用和常见场景示例详解》ModelMapper是Java对象映射库,支持自动映射、自定义规则、集合转换及高级配置(如匹配策略、转换器),可集成SpringBoot,减少样板... 目录1. 添加依赖2. 基本用法示例:简单对象映射3. 自定义映射规则4. 集合映射5. 高级配置匹