TPH-YOLOv5: 基于Transformer预测头的改进YOLOv5用于无人机捕获场景目标检测

本文主要是介绍TPH-YOLOv5: 基于Transformer预测头的改进YOLOv5用于无人机捕获场景目标检测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        代码链接:GitHub - cv516Buaa/tph-yolov5

        如果进入不了github,就在这里下载,没有权重(免费的): https://download.csdn.net/download/weixin_44911037/86823848

        这是一篇针对无人机小目标算法比赛后写的论文,无人机捕获场景下的目标检测是近年来的热门课题。由于无人机总是在不同的高度上飞行,目标尺度变化剧烈,给网络优化带来了负担。此外,高速和低空飞行会使密集的物体产生运动模糊,这对目标识别带来了很大的挑战,如下图所示是无人机拍摄的场景,我们可以看出无人机拍摄的图片尺度变化确实非常大。

        

        在VisDrone2021测试挑战数据集上,提出的TPH-YOLOv5达到39.18% (AP),比DPNetV3(之前的SOTA方法)高出1.81%。在VisDrone2021 DET挑战赛中,TPH-YOLOv5获得第5名,与第一名相比差距不大。

        这篇文章所做的贡献在于:1、增加了一个检测头,用于更好地检测小目标,这是很多学者解决小目标的基本操作,但是这种操作会给模型行整体增加计算量。2、利用Transformer来更改原来yolov5的检测头,个人认为这部分是这篇比赛论文比较大的创新点,算是把Transformer和CNN结合起来。3、引入CBAM注意力机制模块,这部分算是一个比较常规的操作,毕竟注意力机制在目标检测中的作用还是比较大的,当然要放在合适的地方。4、提供了一些有用的策略,比如说数据增强,例如数据增强,多尺度测试(这种方法在第一定程度会增加最终的mAP)、使用了额外的分类器。5.使用了自训练分类器来提高对一些混淆类别的分类能力(这是针对相似车但是属于不同的类)。

 在这篇文章中,对于最后预测后处理使用集成的方式,我们可以从图中可以看出,他使用WBF和NMS的集成方式,对于WBF我在下图给出解释,相当于另外生成一种加权后的预测框,想了解更深可以看论文:https://arxiv.org/abs/1910.13302,当然具体怎么集成的还是需要看代码才能准确知道,后面有时间再看。

        至于网络模型的具体结构,如上图所示,在特征增强(NECK)中使用了Transfromer 的结构,因为transformer能够获得更大的感受。其实在一部分我还是比较困惑的,就是将3维的特征变成二维再转变成3维的不嫌麻烦吗?又或者这里面的结构数据会不会发生某种变化,当然这是我一直困惑的事情,我后面好好看看代码,看看它的模型结构。具体代码就是下面的。将特征层转成向量再转成特征层。

class TransformerBlock(nn.Module):# Vision Transformer https://arxiv.org/abs/2010.11929def __init__(self, c1, c2, num_heads, num_layers):super().__init__()self.conv = Noneif c1 != c2:self.conv = Conv(c1, c2)self.linear = nn.Linear(c2, c2)  # learnable position embeddingself.tr = nn.Sequential(*(TransformerLayer(c2, num_heads) for _ in range(num_layers)))self.c2 = c2def forward(self, x):if self.conv is not None:x = self.conv(x)b, _, w, h = x.shapep = x.flatten(2).unsqueeze(0).transpose(0, 3).squeeze(3)return self.tr(p + self.linear(p)).unsqueeze(3).transpose(0, 3).reshape(b, self.c2, w, h)

         下面是就是一般的Transformer的编码结构。

        总体来说,这篇文章给我的一些参考意见就是使用Transformer来对小目标检测。

class TransformerLayer(nn.Module):def __init__(self, c, num_heads):super().__init__()self.ln1 = nn.LayerNorm(c)self.q = nn.Linear(c, c, bias=False)self.k = nn.Linear(c, c, bias=False)self.v = nn.Linear(c, c, bias=False)self.ma = nn.MultiheadAttention(embed_dim=c, num_heads=num_heads)self.ln2 = nn.LayerNorm(c)self.fc1 = nn.Linear(c, 4*c, bias=False)self.fc2 = nn.Linear(4*c, c, bias=False)self.dropout = nn.Dropout(0.1)self.act = nn.ReLU(True)def forward(self, x):x_ = self.ln1(x)x = self.dropout(self.ma(self.q(x_), self.k(x_), self.v(x_))[0]) + xx_ = self.ln2(x)x_ = self.fc2(self.dropout(self.act(self.fc1(x_))))x = x + self.dropout(x_)return x

这篇关于TPH-YOLOv5: 基于Transformer预测头的改进YOLOv5用于无人机捕获场景目标检测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/491106

相关文章

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Python主动抛出异常的各种用法和场景分析

《Python主动抛出异常的各种用法和场景分析》在Python中,我们不仅可以捕获和处理异常,还可以主动抛出异常,也就是以类的方式自定义错误的类型和提示信息,这在编程中非常有用,下面我将详细解释主动抛... 目录一、为什么要主动抛出异常?二、基本语法:raise关键字基本示例三、raise的多种用法1. 抛

Spring组件实例化扩展点之InstantiationAwareBeanPostProcessor使用场景解析

《Spring组件实例化扩展点之InstantiationAwareBeanPostProcessor使用场景解析》InstantiationAwareBeanPostProcessor是Spring... 目录一、什么是InstantiationAwareBeanPostProcessor?二、核心方法解

Java 枚举的基本使用方法及实际使用场景

《Java枚举的基本使用方法及实际使用场景》枚举是Java中一种特殊的类,用于定义一组固定的常量,枚举类型提供了更好的类型安全性和可读性,适用于需要定义一组有限且固定的值的场景,本文给大家介绍Jav... 目录一、什么是枚举?二、枚举的基本使用方法定义枚举三、实际使用场景代替常量状态机四、更多用法1.实现接

java -jar命令运行 jar包时运行外部依赖jar包的场景分析

《java-jar命令运行jar包时运行外部依赖jar包的场景分析》:本文主要介绍java-jar命令运行jar包时运行外部依赖jar包的场景分析,本文给大家介绍的非常详细,对大家的学习或工作... 目录Java -jar命令运行 jar包时如何运行外部依赖jar包场景:解决:方法一、启动参数添加: -Xb

C/C++ chrono简单使用场景示例详解

《C/C++chrono简单使用场景示例详解》:本文主要介绍C/C++chrono简单使用场景示例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友... 目录chrono使用场景举例1 输出格式化字符串chrono使用场景China编程举例1 输出格式化字符串示

Java集成Onlyoffice的示例代码及场景分析

《Java集成Onlyoffice的示例代码及场景分析》:本文主要介绍Java集成Onlyoffice的示例代码及场景分析,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 需求场景:实现文档的在线编辑,团队协作总结:两个接口 + 前端页面 + 配置项接口1:一个接口,将o

Python Flask 库及应用场景

《PythonFlask库及应用场景》Flask是Python生态中​轻量级且高度灵活的Web开发框架,基于WerkzeugWSGI工具库和Jinja2模板引擎构建,下面给大家介绍PythonFl... 目录一、Flask 库简介二、核心组件与架构三、常用函数与核心操作 ​1. 基础应用搭建​2. 路由与参

IDEA实现回退提交的git代码(四种常见场景)

《IDEA实现回退提交的git代码(四种常见场景)》:本文主要介绍IDEA实现回退提交的git代码(四种常见场景),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1.已提交commit,还未push到远端(Undo Commit)2.已提交commit并push到

macOS Sequoia 15.5 发布: 改进邮件和屏幕使用时间功能

《macOSSequoia15.5发布:改进邮件和屏幕使用时间功能》经过常规Beta测试后,新的macOSSequoia15.5现已公开发布,但重要的新功能将被保留到WWDC和... MACOS Sequoia 15.5 正式发布!本次更新为 Mac 用户带来了一系列功能强化、错误修复和安全性提升,进一步增