SSIM(结构相似性)-数学公式及python实现

2023-12-13 22:08

本文主要是介绍SSIM(结构相似性)-数学公式及python实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

SSIM是一种衡量两幅图片相似度的指标。
出处来自于2004年的一篇TIP,
标题为:Image Quality Assessment: From Error Visibility to Structural Similarity
地址为:https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1284395

与PSNR一样,SSIM也经常用作图像质量的评价。


先了解SSIM的输入
SSIM的输入就是两张图像,我们要得到其相似性的两张图像。其中一张是未经压缩的无失真图像(即ground truth),另一张就是你恢复出的图像。所以,SSIM可以作为super-resolution质量的指标。
假设我们输入的两张图像分别是x和y,那么

式1是SSIM的数学定义,其中:


总结

  1. SSIM具有对称性,即SSIM(x,y)=SSIM(y,x)
  2. SSIM是一个0到1之间的数,越大表示输出图像和无失真图像的差距越小,即图像质量越好。当两幅图像一模一样时,SSIM=1;

如PSNR一样,SSIM这种常用计算函数也被tensorflow收编了,我们只需在tf中调用ssim就可以了:

tf.image.ssim(x, y, 255)

源代码如下:

def ssim(img1, img2, max_val):"""Computes SSIM index between img1 and img2.This function is based on the standard SSIM implementation from:Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Imagequality assessment: from error visibility to structural similarity. IEEEtransactions on image processing.Note: The true SSIM is only defined on grayscale.  This function does notperform any colorspace transform.  (If input is already YUV, then it willcompute YUV SSIM average.)Details:- 11x11 Gaussian filter of width 1.5 is used.- k1 = 0.01, k2 = 0.03 as in the original paper.The image sizes must be at least 11x11 because of the filter size.Example:# Read images from file.im1 = tf.decode_png('path/to/im1.png')im2 = tf.decode_png('path/to/im2.png')# Compute SSIM over tf.uint8 Tensors.ssim1 = tf.image.ssim(im1, im2, max_val=255)# Compute SSIM over tf.float32 Tensors.im1 = tf.image.convert_image_dtype(im1, tf.float32)im2 = tf.image.convert_image_dtype(im2, tf.float32)ssim2 = tf.image.ssim(im1, im2, max_val=1.0)# ssim1 and ssim2 both have type tf.float32 and are almost equal.img1: First image batch.img2: Second image batch.max_val: The dynamic range of the images (i.e., the difference between themaximum the and minimum allowed values).Returns:A tensor containing an SSIM value for each image in batch.  Returned SSIMvalues are in range (-1, 1], when pixel values are non-negative. Returnsa tensor with shape: broadcast(img1.shape[:-3], img2.shape[:-3])."""_, _, checks = _verify_compatible_image_shapes(img1, img2)with ops.control_dependencies(checks):img1 = array_ops.identity(img1)# Need to convert the images to float32.  Scale max_val accordingly so that# SSIM is computed correctly.max_val = math_ops.cast(max_val, img1.dtype)max_val = convert_image_dtype(max_val, dtypes.float32)img1 = convert_image_dtype(img1, dtypes.float32)img2 = convert_image_dtype(img2, dtypes.float32)ssim_per_channel, _ = _ssim_per_channel(img1, img2, max_val)# Compute average over color channels.return math_ops.reduce_mean(ssim_per_channel, [-1])

参考:https://en.wikipedia.org/wiki/Structural_similarity

这篇关于SSIM(结构相似性)-数学公式及python实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/490133

相关文章

HTML5 getUserMedia API网页录音实现指南示例小结

《HTML5getUserMediaAPI网页录音实现指南示例小结》本教程将指导你如何利用这一API,结合WebAudioAPI,实现网页录音功能,从获取音频流到处理和保存录音,整个过程将逐步... 目录1. html5 getUserMedia API简介1.1 API概念与历史1.2 功能与优势1.3

Java实现删除文件中的指定内容

《Java实现删除文件中的指定内容》在日常开发中,经常需要对文本文件进行批量处理,其中,删除文件中指定内容是最常见的需求之一,下面我们就来看看如何使用java实现删除文件中的指定内容吧... 目录1. 项目背景详细介绍2. 项目需求详细介绍2.1 功能需求2.2 非功能需求3. 相关技术详细介绍3.1 Ja

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

一文深入详解Python的secrets模块

《一文深入详解Python的secrets模块》在构建涉及用户身份认证、权限管理、加密通信等系统时,开发者最不能忽视的一个问题就是“安全性”,Python在3.6版本中引入了专门面向安全用途的secr... 目录引言一、背景与动机:为什么需要 secrets 模块?二、secrets 模块的核心功能1. 基

PostgreSQL中MVCC 机制的实现

《PostgreSQL中MVCC机制的实现》本文主要介绍了PostgreSQL中MVCC机制的实现,通过多版本数据存储、快照隔离和事务ID管理实现高并发读写,具有一定的参考价值,感兴趣的可以了解一下... 目录一 MVCC 基本原理python1.1 MVCC 核心概念1.2 与传统锁机制对比二 Postg

SpringBoot整合Flowable实现工作流的详细流程

《SpringBoot整合Flowable实现工作流的详细流程》Flowable是一个使用Java编写的轻量级业务流程引擎,Flowable流程引擎可用于部署BPMN2.0流程定义,创建这些流程定义的... 目录1、流程引擎介绍2、创建项目3、画流程图4、开发接口4.1 Java 类梳理4.2 查看流程图4

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM