SSIM(结构相似性)-数学公式及python实现

2023-12-13 22:08

本文主要是介绍SSIM(结构相似性)-数学公式及python实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

SSIM是一种衡量两幅图片相似度的指标。
出处来自于2004年的一篇TIP,
标题为:Image Quality Assessment: From Error Visibility to Structural Similarity
地址为:https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1284395

与PSNR一样,SSIM也经常用作图像质量的评价。


先了解SSIM的输入
SSIM的输入就是两张图像,我们要得到其相似性的两张图像。其中一张是未经压缩的无失真图像(即ground truth),另一张就是你恢复出的图像。所以,SSIM可以作为super-resolution质量的指标。
假设我们输入的两张图像分别是x和y,那么

式1是SSIM的数学定义,其中:


总结

  1. SSIM具有对称性,即SSIM(x,y)=SSIM(y,x)
  2. SSIM是一个0到1之间的数,越大表示输出图像和无失真图像的差距越小,即图像质量越好。当两幅图像一模一样时,SSIM=1;

如PSNR一样,SSIM这种常用计算函数也被tensorflow收编了,我们只需在tf中调用ssim就可以了:

tf.image.ssim(x, y, 255)

源代码如下:

def ssim(img1, img2, max_val):"""Computes SSIM index between img1 and img2.This function is based on the standard SSIM implementation from:Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Imagequality assessment: from error visibility to structural similarity. IEEEtransactions on image processing.Note: The true SSIM is only defined on grayscale.  This function does notperform any colorspace transform.  (If input is already YUV, then it willcompute YUV SSIM average.)Details:- 11x11 Gaussian filter of width 1.5 is used.- k1 = 0.01, k2 = 0.03 as in the original paper.The image sizes must be at least 11x11 because of the filter size.Example:# Read images from file.im1 = tf.decode_png('path/to/im1.png')im2 = tf.decode_png('path/to/im2.png')# Compute SSIM over tf.uint8 Tensors.ssim1 = tf.image.ssim(im1, im2, max_val=255)# Compute SSIM over tf.float32 Tensors.im1 = tf.image.convert_image_dtype(im1, tf.float32)im2 = tf.image.convert_image_dtype(im2, tf.float32)ssim2 = tf.image.ssim(im1, im2, max_val=1.0)# ssim1 and ssim2 both have type tf.float32 and are almost equal.img1: First image batch.img2: Second image batch.max_val: The dynamic range of the images (i.e., the difference between themaximum the and minimum allowed values).Returns:A tensor containing an SSIM value for each image in batch.  Returned SSIMvalues are in range (-1, 1], when pixel values are non-negative. Returnsa tensor with shape: broadcast(img1.shape[:-3], img2.shape[:-3])."""_, _, checks = _verify_compatible_image_shapes(img1, img2)with ops.control_dependencies(checks):img1 = array_ops.identity(img1)# Need to convert the images to float32.  Scale max_val accordingly so that# SSIM is computed correctly.max_val = math_ops.cast(max_val, img1.dtype)max_val = convert_image_dtype(max_val, dtypes.float32)img1 = convert_image_dtype(img1, dtypes.float32)img2 = convert_image_dtype(img2, dtypes.float32)ssim_per_channel, _ = _ssim_per_channel(img1, img2, max_val)# Compute average over color channels.return math_ops.reduce_mean(ssim_per_channel, [-1])

参考:https://en.wikipedia.org/wiki/Structural_similarity

这篇关于SSIM(结构相似性)-数学公式及python实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/490133

相关文章

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

Java实现将HTML文件与字符串转换为图片

《Java实现将HTML文件与字符串转换为图片》在Java开发中,我们经常会遇到将HTML内容转换为图片的需求,本文小编就来和大家详细讲讲如何使用FreeSpire.DocforJava库来实现这一功... 目录前言核心实现:html 转图片完整代码场景 1:转换本地 HTML 文件为图片场景 2:转换 H

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

C#实现一键批量合并PDF文档

《C#实现一键批量合并PDF文档》这篇文章主要为大家详细介绍了如何使用C#实现一键批量合并PDF文档功能,文中的示例代码简洁易懂,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言效果展示功能实现1、添加文件2、文件分组(书签)3、定义页码范围4、自定义显示5、定义页面尺寸6、PDF批量合并7、其他方法

SpringBoot实现不同接口指定上传文件大小的具体步骤

《SpringBoot实现不同接口指定上传文件大小的具体步骤》:本文主要介绍在SpringBoot中通过自定义注解、AOP拦截和配置文件实现不同接口上传文件大小限制的方法,强调需设置全局阈值远大于... 目录一  springboot实现不同接口指定文件大小1.1 思路说明1.2 工程启动说明二 具体实施2

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

Java实现在Word文档中添加文本水印和图片水印的操作指南

《Java实现在Word文档中添加文本水印和图片水印的操作指南》在当今数字时代,文档的自动化处理与安全防护变得尤为重要,无论是为了保护版权、推广品牌,还是为了在文档中加入特定的标识,为Word文档添加... 目录引言Spire.Doc for Java:高效Word文档处理的利器代码实战:使用Java为Wo

Vite 打包目录结构自定义配置小结

《Vite打包目录结构自定义配置小结》在Vite工程开发中,默认打包后的dist目录资源常集中在asset目录下,不利于资源管理,本文基于Rollup配置原理,本文就来介绍一下通过Vite配置自定义... 目录一、实现原理二、具体配置步骤1. 基础配置文件2. 配置说明(1)js 资源分离(2)非 JS 资