【深度学习】卷积神经网络的可视化---Visualization by activation Maximization

本文主要是介绍【深度学习】卷积神经网络的可视化---Visualization by activation Maximization,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

The Overview:

Activation Maximization (AM)是用来可视化各个卷积层的输入偏好。 通过观测输入偏好,我们可以更好的了解CNN的卷积层到底学习到了什么。卷积学习得到的特征可以通过一帧合成图像来最大化神经元的激活。为了合成这个输入偏好,我们可以通过对CNN的输入像素进行反复迭代来最大化神经元的激活。

换言之,我们可以通过合成一个输入样式来激活神经元,使得神经元激活最大化的输入样式便是神经元的输入偏好,也就是通过输入偏好可以观察神经元到底学习了什么。

Activation Maximization 是由Erhan在2009年提出 D. Erhan, Y. Bengio, A. Courville and P. Vincent, Visualizing higher-layer features of a deep network, (2009), p3 。Erhan利用Activation Maximization观测了Deep Belief Net隐层神经元的输入偏好和Stacked Denoising Auto-Encoder在MNIST数据集学习到的特征。之后,Simonyan 用这个算法来可视化CNN的最后一层神经元。K. Simonyan, A. Vedaldi and A. Zisserman, Deep inside convolutional networks: Visualising image classification models and saliency maps。Google也通过这种方法来集成可视化特征样式应用在Inception网络中Inceptionism: Going deeper into neural networks。Yosinksi则将AM运用到更广泛的范围中,可以可视化CNN所有层中的各个神经元。Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps

近来一些的AM算法则尝试对输出的样式进行在更加容易的解释和。总而言之,AM在解释神经元的interests和层次特征方面体现出了强大的能力。

Algorithm

AM算法是通过输入一帧合成样式图像 x ∗ x^{*} x来最大化神经元的激活函数,其表达式可以为:

x ∗ = a r g m a x x a i , l ( θ , x ) x^{*} = \mathop{argmax} \limits_{x} a_{i,l} (\theta, x) x=xargmaxai,l(θ,x)

其中 θ \theta θ表示为网络参数(权重weight与bias)。

算法流程可以分为以下四部:
(1) 设置一个随机的输入图像,获得某一层(i)的特定卷积(l)的激活 a i , l a_{i,l} ai,l
(2)在固定CNN参数的情况下,计算激活 a i , l a_{i,l} ai,l 与 输入图像的梯度 ∂ a i , l ∂ x \frac{\partial a_{i,l}}{\partial x} xai,l
(3) 通过迭代来更改输入图像的像素,从而使得激活最大化。此处采用梯度上升算法:
x = x + η ∗ ∂ a i , l ∂ x x = x + \eta * \frac{\partial a_{i,l}}{\partial x} x=x+ηxai,l
(4)这个过程终止在一个特定模式图像x∗,当图像没有任何噪音。该模式被视为该神经元的首选输入

注意:

如果是可视化CNN最后一层,我们应该采取logits,而不是softmax过的概率。这是因为softmax是通过normalize最后一层的概率介于0-1之间,最大化类别概率可以通过降低其他类别的置信概率得到。

实验

这里提供keras-blog的例子,该例子实现在VGG16网络:
keras实现方法见:https://blog.keras.io/how-convolutional-neural-networks-see-the-world.html
我复现了tensorflow的方法见:https://github.com/XiaotianM/CNN_Visual_tensorflow
在这里插入图片描述

这篇关于【深度学习】卷积神经网络的可视化---Visualization by activation Maximization的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/489080

相关文章

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷

Python数据分析与可视化的全面指南(从数据清洗到图表呈现)

《Python数据分析与可视化的全面指南(从数据清洗到图表呈现)》Python是数据分析与可视化领域中最受欢迎的编程语言之一,凭借其丰富的库和工具,Python能够帮助我们快速处理、分析数据并生成高质... 目录一、数据采集与初步探索二、数据清洗的七种武器1. 缺失值处理策略2. 异常值检测与修正3. 数据

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)

《使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)》字体设计和矢量图形处理是编程中一个有趣且实用的领域,通过Python的matplotlib库,我们可以轻松将字体轮廓... 目录背景知识字体轮廓的表示实现步骤1. 安装依赖库2. 准备数据3. 解析路径指令4. 绘制图形关键

8种快速易用的Python Matplotlib数据可视化方法汇总(附源码)

《8种快速易用的PythonMatplotlib数据可视化方法汇总(附源码)》你是否曾经面对一堆复杂的数据,却不知道如何让它们变得直观易懂?别慌,Python的Matplotlib库是你数据可视化的... 目录引言1. 折线图(Line Plot)——趋势分析2. 柱状图(Bar Chart)——对比分析3

Spring Boot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)

《SpringBoot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)》:本文主要介绍SpringBoot拦截器Interceptor与过滤器Filter深度解析... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现与实

使用Vue-ECharts实现数据可视化图表功能

《使用Vue-ECharts实现数据可视化图表功能》在前端开发中,经常会遇到需要展示数据可视化的需求,比如柱状图、折线图、饼图等,这类需求不仅要求我们准确地将数据呈现出来,还需要兼顾美观与交互体验,所... 目录前言为什么选择 vue-ECharts?1. 基于 ECharts,功能强大2. 更符合 Vue

MyBatis分页插件PageHelper深度解析与实践指南

《MyBatis分页插件PageHelper深度解析与实践指南》在数据库操作中,分页查询是最常见的需求之一,传统的分页方式通常有两种内存分页和SQL分页,MyBatis作为优秀的ORM框架,本身并未提... 目录1. 为什么需要分页插件?2. PageHelper简介3. PageHelper集成与配置3.

Maven 插件配置分层架构深度解析

《Maven插件配置分层架构深度解析》:本文主要介绍Maven插件配置分层架构深度解析,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Maven 插件配置分层架构深度解析引言:当构建逻辑遇上复杂配置第一章 Maven插件配置的三重境界1.1 插件配置的拓扑