【深度学习】关于CNN网络的FLOPs的计算

2023-12-13 16:08

本文主要是介绍【深度学习】关于CNN网络的FLOPs的计算,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在评估一个CNN网络的计算复杂度时,浮点数运算(float point operation)是一个常用的衡量指标。注意本文介绍的主要是MAC(乘法加法操作),在一些论文里是仅仅考虑乘法操作的。

在常规的计算中,通常不考虑非线性函数的计算量(the nonlinearity),对于卷积操作:(带bias)

F L O P s = 2 ∗ H W ∗ ( C i n K 2 + 1 ) C o u t = 2 ∗ ( H W K 2 C i n C o u t + H W C o u t ) FLOPs = 2*HW*(C_{in}K^{2}+1)C_{out} \\ =2*(HWK^{2}C_{in}C_{out} +HW C_{out}) FLOPs=2HW(CinK2+1)Cout=2(HWK2CinCout+HWCout)

此处经评论提醒,已更正
其中式子中 H W K 2 C i n C o u t HWK^{2}C_{in}C_{out} HWK2CinCout为卷积操作, H W C o u t HWC_{out} HWCout为bias操作,2则表示为MAC操作(包含累加及累乘)

上面是NVIDIA在文章《PRUNING CONVOLUTIONAL NEURAL NETWORKS FOR RESOURCE EFFICIENT INFERENCE》文章中的计算方式。

但有人认为这是一种估算,他们认为对于卷积的计算量计算如下(不含bias):

F L O P s = ( 2 ∗ C i n ∗ K 2 − 1 ) ∗ H ∗ W ∗ C o u t FLOPs = (2*C_{in}*K^{2} - 1) * H * W * C_{out} FLOPs=(2CinK21)HWCout

其中第一个括号可拆成 ( C i n ∗ K 2 + C i n ∗ K 2 − 1 ) (C_{in} * K^{2} + C_{in} * K^{2} -1) (CinK2+CinK21),原因是n个数相加需要n-1次加法,此处不含bias。若没有-1则是带bias的计算方式。他们认为Nvidia是一种估算。

实际上两种计算的差别不是很大。

对于全连接操作:输入维度 I I I,输出维度 O O O,则全连接层(不含bias):

F L O P s = ( 2 × I − 1 ) × O FLOPs = (2 \times I-1) \times O FLOPs=(2×I1)×O

全连接操作,含bias:

F L O P s = 2 × I × O FLOPs = 2 \times I \times O FLOPs=2×I×O

这里是没有考虑全连接中的bias操作,比如x1+x2+…xn只有(n-1)次加法。

Ref:

  1. PRUNING CONVOLUTIONAL NEURAL NETWORKS FOR RESOURCE EFFICIENT INFERENCE
  2. https://www.zhihu.com/question/65305385/answer/451060549

这篇关于【深度学习】关于CNN网络的FLOPs的计算的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/489075

相关文章

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

SpringBoot开发中十大常见陷阱深度解析与避坑指南

《SpringBoot开发中十大常见陷阱深度解析与避坑指南》在SpringBoot的开发过程中,即使是经验丰富的开发者也难免会遇到各种棘手的问题,本文将针对SpringBoot开发中十大常见的“坑... 目录引言一、配置总出错?是不是同时用了.properties和.yml?二、换个位置配置就失效?搞清楚加

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷