基于Python和Surprise库搭建推荐系统

2023-12-13 09:20

本文主要是介绍基于Python和Surprise库搭建推荐系统,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大家好,在数据时代,推荐系统是提升用户体验的重要工具,今天我们将介绍如何使用亚马逊的电影评分数据集创建电影推荐系统。

1.数据加载与探索

首先,通过加载和探索数据集开启数据分析过程,导入Pandas和Numpy,这是进行数据处理的基础库。通过检查数据集的前几行、形状、大小和统计摘要进行探索。.head()方法可以让我们一窥数据集的全貌,而.shape方法则展示了数据集的大小。

import pandas as pd
import numpy as np 
amazon = pd. read_csv (" path_to / Amazon . csv")
print ( amazon . head ()
print (" Dataset ␣ shape :", amazon . shape )

2.数据清洗和预处理

为了确保分析的完整性,必须替换缺失值并完善DataFrame。fillna方法可用于处理缺失值,这对于保持数据完整性至关重要,删除不相关的列(如'user_id')可以使分析集中在电影评分上。

Amazon_filtered = amazon . fillna ( value =0)
Amazon_filtered1 = Amazon_filtered . drop ( columns =’user_id ’)

3.深入分析浏览量和评分

通过分析浏览量,分析电影的受欢迎程度,这涉及对评分进行求和并找到最大值。按电影对评分进行求和可以得到一个受欢迎度指标,argmax()函数可以识别出观看次数最多的电影。

Amazon_max_views = Amazon_filtered1 .sum ()
max_views_index = Amazon_max_views . argmax ()
print (" Most_viewed _movie _index :", max_views_index )

4.计算平均评分

通过计算电影的平均评分,可以了解观众的总体满意度。

average_ratings = Amazon_max_views . mean ()
print (" Average_rating :", average_ratings )

5.建立推荐模型:SVD算法

5.1 格式化数据供Surprise使用

通过准备数据以供Surprise库使用来为推荐做好准备。

from surprise import Reader , Dataset
reader = Reader ( rating_scale =(-1, 10))
data = Dataset . load_from_df ( melt_df . fillna (0) , reader )

5.2 模型训练与评估

该系统的开发目的是根据用户的偏好来推荐电影,推荐系统的首选工具Surprise库。

from surprise import SVD
from surprise.model_selection import train_test_split ,
cross_validate
trainset , testset = train_test_split (data , test_size =0.25)
algo = SVD ()
algo . fit( trainset )
predictions = algo . test ( testset )
cross_validate (algo , data , measures =[ ’RMSE ’, ’MAE ’], cv =3,
verbose = True )

5.3 进行预测

使用SVD算法进行预测,该算法是进行矩阵因式分解的强大工具,用于预测用户对电影的评分。

user_id = ’ A1CV1WROP5KTTW ’
movie = ’Movie6 ’
rating = 5
algo . predict ( user_id , movie , r_ui = rating )

结果如下所示:

图片

6.模型应用

这个脚本不仅揭示了亚马逊电影评分数据的复杂性,还提供了一个多功能的分析工具包。这里的方法也可以适用于各种数据场景。例如,在教育领域,类似的推荐系统可以推荐个性化的学习材料、课程甚至课外活动,从而提高学生的参与度和学习效果。

7.教育示例

利用Surprise库,根据学生的偏好推荐教育资源。

数据集如下:

import pandas as pd
# 假设'education_data.csv'包含列'student_id'、'resource_id'和'rating'
education_data = pd. read_csv (" path_to / education_data . csv")
print ( education_data . head ()

分析资源受欢迎程度,找出最受欢迎或评分最高的教育资源。

resource_popularity = education_filtered . groupby
’resource_id ’). sum ()
most_popular_resource =
resource_popularity [’rating ’]. idxmax ()
print (" Most_popular_resource :
{ most_popular_resource }")

利用Surprise库,根据用户偏好推荐教育资源。

resource_popularity =
education_filtered . groupby (’ resource_id ’). sum ()
most_popular_resource =
resource_popularity [’rating ’]. idxmax ()
print (" Most _popular _resource :{ most_popular_resource }")

针对特定学生和教育资源预测评分,展示该模型在教育环境中的适用性。

Student_id = ’student123 ’
resource = ’course456 ’
predicted_rating = algo . predict ( Student_id , resource ). est
print (" Predicted_rating_for_resource
{ resource }_by_user_{ user_id }:{ predicted_rating }")

这篇关于基于Python和Surprise库搭建推荐系统的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/487920

相关文章

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Knife4j+Axios+Redis前后端分离架构下的 API 管理与会话方案(最新推荐)

《Knife4j+Axios+Redis前后端分离架构下的API管理与会话方案(最新推荐)》本文主要介绍了Swagger与Knife4j的配置要点、前后端对接方法以及分布式Session实现原理,... 目录一、Swagger 与 Knife4j 的深度理解及配置要点Knife4j 配置关键要点1.Spri

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

Python中你不知道的gzip高级用法分享

《Python中你不知道的gzip高级用法分享》在当今大数据时代,数据存储和传输成本已成为每个开发者必须考虑的问题,Python内置的gzip模块提供了一种简单高效的解决方案,下面小编就来和大家详细讲... 目录前言:为什么数据压缩如此重要1. gzip 模块基础介绍2. 基本压缩与解压缩操作2.1 压缩文

Python设置Cookie永不超时的详细指南

《Python设置Cookie永不超时的详细指南》Cookie是一种存储在用户浏览器中的小型数据片段,用于记录用户的登录状态、偏好设置等信息,下面小编就来和大家详细讲讲Python如何设置Cookie... 目录一、Cookie的作用与重要性二、Cookie过期的原因三、实现Cookie永不超时的方法(一)

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

Python函数作用域示例详解

《Python函数作用域示例详解》本文介绍了Python中的LEGB作用域规则,详细解析了变量查找的四个层级,通过具体代码示例,展示了各层级的变量访问规则和特性,对python函数作用域相关知识感兴趣... 目录一、LEGB 规则二、作用域实例2.1 局部作用域(Local)2.2 闭包作用域(Enclos

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

Qt QCustomPlot库简介(最新推荐)

《QtQCustomPlot库简介(最新推荐)》QCustomPlot是一款基于Qt的高性能C++绘图库,专为二维数据可视化设计,它具有轻量级、实时处理百万级数据和多图层支持等特点,适用于科学计算、... 目录核心特性概览核心组件解析1.绘图核心 (QCustomPlot类)2.数据容器 (QCPDataC