Pearson、Spearman 相关性分析使用

2023-12-13 09:12

本文主要是介绍Pearson、Spearman 相关性分析使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

介绍

Pearson 积差相关系数衡量了两个定量变量之间的线性相关程度。 用来衡量两个数据集的线性相关程度,仅当一个变量的变化与另一个变量的比例变化相关时,关系才是线性的。

Spearman等级相关系数则衡量分级定序变量之间的相关程度。斯皮尔曼相关系数不关心两个数据集是否线性相关,而是单调相关。它是基于每个变量的排名值,而不是原始数据,所以斯皮尔曼相关也叫等级相关或者秩相关(即rank)。

简单一句话概括:Pearson 处理变量的数据原始值,而Spearman 处理数据排序值(需要先做变换:transform)

使用比较

皮尔逊 = +1,斯皮尔曼 = +1

皮尔逊 = +0.851,斯皮尔曼 = +1

皮尔逊 = −0.093,斯皮尔曼 = −0.093


如果关系是一个变量减小,而另一个变量增加,但数量不一致,则皮尔逊相关系数为负但大于 −1。在这种情况下,斯皮尔曼系数仍然等于 −1

皮尔逊 = −0.799,斯皮尔曼 = −1

救救孩子!Spearman、Pearson相关系数傻傻分不清? - A Byte of Biology

# 在100-130的范围随机生成30个点
a <- sample(100:130, 30)
b <- sample(100:130, 30)
df <- data.frame(a, b)
# 画散点图,线性拟合
ggplot(df, aes(x=a, y=b)) + geom_smooth(method="lm") + geom_point() + xlim(0, 140) + ylim(0, 140)
# 计算Pearson和Spearman相关系数
cor.test(a, b, method="pearson")
cor.test(a, b, method="spearman")
##########################################
# 再往坐标(0, 0)追加一个点
a <- append(a, 0)
b <- append(b, 0)
df <- data.frame(a, b)
# 再次画散点图,线性拟合
ggplot(df, aes(x=a, y=b)) + geom_smooth(method="lm") + geom_point() + xlim(0, 140) + ylim(0, 140)
# 再次计算Pearson和Spearman相关系数
cor.test(a, b, method="pearson")
cor.test(a, b, method="spearman")

Pearson相关系数要求统计资料要是连续型变量,并且符合正态分布,而Spearman相关系数没有这个要求,Pearson相关系数在出现奇异值,或者长尾分布的时候稳定性差,不太靠,而Spearman要相对稳健很多。

下图可以看出,只需要增加一个离群的点,就可以让Pearson相关系数从“不相关”变为“强相关”,所以这个时候Spearman相对更稳。

除了单纯看基因调控的相关性,有些同学是拿到测序数据之后,想分析转录组样本重复相关性。这个时候就有理由假设样本重复线性相关,所以用得比较多的还是Pearson相关系数。但其实转录组测序的表达量不符合正态分布,并且通常都有个很长的“尾巴”(一些极高表达的基因),会导致Pearson相关系数分析的结果可靠性不佳。但也不能因为转录组不符合正态分布就换用Spearman,这样统计效力更差了。可以在做Pearson相关性分析之前先对数据做变换,另外应该加上其他方法进行验证,比如聚类,不要仅仅使用Pearson相关系数。

参考:

1:数学笔记:pearson correlation coefficient VS spearman correlation coefficient_pearson and spearman correlation coefficients-CSDN博客

2:pearson 和spearman的区别~? - 知乎 (zhihu.com)

3:相关性分析和作图-CSDN博客

4:救救孩子!Spearman、Pearson相关系数傻傻分不清? - A Byte of Biology

这篇关于Pearson、Spearman 相关性分析使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/487894

相关文章

Java NoClassDefFoundError运行时错误分析解决

《JavaNoClassDefFoundError运行时错误分析解决》在Java开发中,NoClassDefFoundError是一种常见的运行时错误,它通常表明Java虚拟机在尝试加载一个类时未能... 目录前言一、问题分析二、报错原因三、解决思路检查类路径配置检查依赖库检查类文件调试类加载器问题四、常见

Python中模块graphviz使用入门

《Python中模块graphviz使用入门》graphviz是一个用于创建和操作图形的Python库,本文主要介绍了Python中模块graphviz使用入门,具有一定的参考价值,感兴趣的可以了解一... 目录1.安装2. 基本用法2.1 输出图像格式2.2 图像style设置2.3 属性2.4 子图和聚

windows和Linux使用命令行计算文件的MD5值

《windows和Linux使用命令行计算文件的MD5值》在Windows和Linux系统中,您可以使用命令行(终端或命令提示符)来计算文件的MD5值,文章介绍了在Windows和Linux/macO... 目录在Windows上:在linux或MACOS上:总结在Windows上:可以使用certuti

CentOS和Ubuntu系统使用shell脚本创建用户和设置密码

《CentOS和Ubuntu系统使用shell脚本创建用户和设置密码》在Linux系统中,你可以使用useradd命令来创建新用户,使用echo和chpasswd命令来设置密码,本文写了一个shell... 在linux系统中,你可以使用useradd命令来创建新用户,使用echo和chpasswd命令来设

Python使用Matplotlib绘制3D曲面图详解

《Python使用Matplotlib绘制3D曲面图详解》:本文主要介绍Python使用Matplotlib绘制3D曲面图,在Python中,使用Matplotlib库绘制3D曲面图可以通过mpl... 目录准备工作绘制简单的 3D 曲面图绘制 3D 曲面图添加线框和透明度控制图形视角Matplotlib

Pandas中统计汇总可视化函数plot()的使用

《Pandas中统计汇总可视化函数plot()的使用》Pandas提供了许多强大的数据处理和分析功能,其中plot()函数就是其可视化功能的一个重要组成部分,本文主要介绍了Pandas中统计汇总可视化... 目录一、plot()函数简介二、plot()函数的基本用法三、plot()函数的参数详解四、使用pl

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

redis中使用lua脚本的原理与基本使用详解

《redis中使用lua脚本的原理与基本使用详解》在Redis中使用Lua脚本可以实现原子性操作、减少网络开销以及提高执行效率,下面小编就来和大家详细介绍一下在redis中使用lua脚本的原理... 目录Redis 执行 Lua 脚本的原理基本使用方法使用EVAL命令执行 Lua 脚本使用EVALSHA命令

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows