GEE——使用cart机器学习方法对Landsat影像条带修复以NDVI和NDWI为例(全代码)

本文主要是介绍GEE——使用cart机器学习方法对Landsat影像条带修复以NDVI和NDWI为例(全代码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简介

之前发表了两篇关于影像修复的文章,并且制作了APP,大家可以去看以下的两篇博客来了解具体的研究内容和整个方法的有效性:

Google Earth Engine APP——影像条带色差、色调不均匀等现象解决方案Landsat5 NDWI Image Restoration APP_ndwi不能识别泛红水体怎么办-CSDN博客

基于GEE云平台一种快速修复Landsat影像条带色差的方法_gee平台-CSDN博客

影像条带色差产生的主要原因有以下几点:

1. 光学系统问题:光学系统中的透镜、滤光片等元件可能存在偏差或缺陷,导致不同波长的光在传输过程中被聚焦的位置不一致,从而产生色差。

2. 图像传感器问题:图像传感器中的像素单元可能对不同波长的光的响应度不同,导致不同波长的光在图像传感器上形成的图像亮度不一致,从而产生色差。

3. 色彩处理问题:在图像的处理过程中,可能会对不同波长的光进行不同的处理,如增强某个颜色通道的亮度或饱和度,从而导致色差。

4. 环境光影响:在拍摄现场,环境光的波长和强度可能有所不同,对拍摄的影像产生影响,从而产生色差。

总的来说,影像条带色差的产生主要是由于光学系统、图像传感器、色彩处理和环境光等多个因素综合作用的结果。

函数:

本文里面的主要使用的函数众多,包含了归一化函数,直方图统计,机器学习方法以及图形展示等 

normalizedDifference(bandNames)

Computes the normalized difference between two bands. If the bands to use are not specified, uses the first two bands. The normalized difference is computed as (first − second) / (first + second). Note that the returned image band name is 'nd', the input image properties are not retained in the output image, and a negative pixel value in either input band will cause the output pixel to be masked. To avoid masking negative input values, use ee.Image.expression() to compute normalized difference.

Arguments:

this:input (Image):

The input image.

bandNames (List, default: null):

A list of names specifying the bands to use. If not specified, the first and second bands are used.

Returns: Image

CLOSE

ee.ImageCollection.fromImages(images)

Returns the image collection containing the given images.

Arguments:

images (List):

The images to include in the collection.

Returns: ImageCollection

ui.Chart.image.histogram(image, regionscalemaxBucketsminBucketWidthmaxRawmaxPixels)

Generates a Chart from an image. Computes and plots histograms of the values of the bands in the specified region of the image.

  • X-axis: Histogram buckets (of band value).

  • Y-axis: Frequency (number of pixels with a band value in the bucket).

Returns a chart.

Arguments:

image (Image):

The image to generate a histogram from.

region (Feature|FeatureCollection|Geometry, optional):

The region to reduce. If omitted, uses the entire image.

scale (Number, optional):

The pixel scale used when applying the histogram reducer, in meters.

maxBuckets (Number, optional):

The maximum number of buckets to use when building a histogram; will be rounded up to a power of 2.

minBucketWidth (Number, optional):

The minimum histogram bucket width, or null to allow any power of 2.

maxRaw (Number, optional):

The number of values to accumulate before building the initial histogram.

maxPixels (Number, optional):

If specified, overrides the maximum number of pixels allowed in the histogram reduction. Defaults to 1e6.

Returns: ui.Chart

setSeriesNames(seriesNames, seriesIndex)

Returns a copy of this chart with updated series names.

Arguments:

this:ui.chart (ui.Chart):

The ui.Chart instance.

seriesNames (Dictionary|Dictionary<String>|List|List<String>|String):

New series names. If it's a string, the name of the series at seriesIndex is set to seriesNames. If it's a list, the value at index i in the list is used as a label for series number i. If it's a dictionary or an object, it's treated as a map from existing series names to new series names. In the last two cases, seriesIndex is ignored.

seriesIndex (Number, optional):

The index of the series to rename. Ignored if seriesNames is a list or dictionary. Series are 0-indexed.

Returns: ui.Chart

ee.Reducer.histogram(maxBucketsminBucketWidthmaxRaw)

Create a reducer that will compute a histogram of the inputs.

Arguments:

maxBuckets (Integer, default: null):

The maximum number of buckets to use when building a histogram; will be rounded up to a power of 2.

这篇关于GEE——使用cart机器学习方法对Landsat影像条带修复以NDVI和NDWI为例(全代码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/485712

相关文章

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

Linux脚本(shell)的使用方式

《Linux脚本(shell)的使用方式》:本文主要介绍Linux脚本(shell)的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录概述语法详解数学运算表达式Shell变量变量分类环境变量Shell内部变量自定义变量:定义、赋值自定义变量:引用、修改、删

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可

LiteFlow轻量级工作流引擎使用示例详解

《LiteFlow轻量级工作流引擎使用示例详解》:本文主要介绍LiteFlow是一个灵活、简洁且轻量的工作流引擎,适合用于中小型项目和微服务架构中的流程编排,本文给大家介绍LiteFlow轻量级工... 目录1. LiteFlow 主要特点2. 工作流定义方式3. LiteFlow 流程示例4. LiteF

使用Python开发一个现代化屏幕取色器

《使用Python开发一个现代化屏幕取色器》在UI设计、网页开发等场景中,颜色拾取是高频需求,:本文主要介绍如何使用Python开发一个现代化屏幕取色器,有需要的小伙伴可以参考一下... 目录一、项目概述二、核心功能解析2.1 实时颜色追踪2.2 智能颜色显示三、效果展示四、实现步骤详解4.1 环境配置4.

Maven 配置中的 <mirror>绕过 HTTP 阻断机制的方法

《Maven配置中的<mirror>绕过HTTP阻断机制的方法》:本文主要介绍Maven配置中的<mirror>绕过HTTP阻断机制的方法,本文给大家分享问题原因及解决方案,感兴趣的朋友一... 目录一、问题场景:升级 Maven 后构建失败二、解决方案:通过 <mirror> 配置覆盖默认行为1. 配置示