使用堆查找前K个最大值兼谈程序优化(下)

2023-12-12 18:48

本文主要是介绍使用堆查找前K个最大值兼谈程序优化(下),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


         在建立正确性的回归测试之后,继续前进。  首先用性能工具分析下, 发现有点悲剧: 效率又倒退了。去除不必要的系统调用后, Profile分析结果如下:

         

         

          七、 一些小改进

          生成一亿个随机数也比较耗时, 可以看到rand()耗费时间并不多,但creatListInternal 耗费时间却很多, 可以推断, 模运算上耗费了很多时间。可以消除模运算。使用(1+rand()+rand()) * (1+rand()) 来生成随机数, (1-65535)*(1-32768) ,可以随机生成1- 65535*32768 之间的任何数。当然,这只是个简单的算法,会有重复元素。 此外,还可以启用编译器优化选项。

          

          八、 聚焦热点区域, 减少比较次数

          不去优化次要的地方,再次聚焦热点区域。 可以发现,fastFindkthMax 的主要时间几乎都花在 fastMaxHeapify 上。 只要改进 fastMaxHeapify 的比较次数即可。 对于结点有左右孩子结点的大多数情形,原来的实现中,总要进行两次与heapsize的比较; 但事实上只需要进行一次比较, 对相应代码做一些改动, 即可获得一定的提速。代码如下:

if (rch <= heapsize) {if ((*(list+lch)) > temp) {curr_largest = lch;}  if ((*(list+rch)) > (*(list+curr_largest))) {curr_largest = rch;}}else {if (lch <=heapsize && (*(list+lch)) > temp) {curr_largest = lch;}}

          

          

          九、 高速缓存的影响

          在(上篇)中,一位博友提醒说高速缓存也起着重要的影响。 感谢他的提醒! 鉴于自己在这方面掌握不够扎实,暂时留空。

          十、  回到算法, 思路比较

         要提速,还是要寻找更好的算法改进。 有没有更好的算法呢?  本文的算法有点“笨拙”, 先分配N个数,然后对这N个数建最大堆, 最后依次找出K个最大数。另有两种思路如下:

         1.  最小堆。 首先在N个数中选择K个数建立K个元素的最小堆。 接着, for i = K+1 to N : 如果 i 小于最小堆的根元素, 那么直接不做理会; 如果 i 大于最小堆的根元素,那么, 将其替代堆的根元素,并重构最小堆。 其正确性如下: A。 初始状态下, 堆中所有元素都比空元素大; B。 对于每次重构最小堆之后, 堆中的元素总是比被替代出来的所有元素要大;C。 当循环结束后,堆中的元素就比所有不在堆中的元素要大。其效率为 O(K + NlogK) ; 

         2.  分治。 分而治之总是一种有效的策略。 先将N个数分成b 堆, 每堆 N/b 个数。 对于每个堆找出前K个从大到小排序的最大数 b*O(N/b+Klog(N/b)) ;最后, 在这b个堆的已排序的K个最大数(bK)找出前K个最大数(O(b+(K-1)logb))。这种算法对于多处理器、并行执行机器更为有效,其时间为O(N/b+Klog(N/b)+b+(K-1)logb) + C(N), C是通信时间。对于大数据量处理来说, 并行算法是一种非常值得研究的领域。 

          

          

这篇关于使用堆查找前K个最大值兼谈程序优化(下)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/485598

相关文章

SpringBoot中使用Flux实现流式返回的方法小结

《SpringBoot中使用Flux实现流式返回的方法小结》文章介绍流式返回(StreamingResponse)在SpringBoot中通过Flux实现,优势包括提升用户体验、降低内存消耗、支持长连... 目录背景流式返回的核心概念与优势1. 提升用户体验2. 降低内存消耗3. 支持长连接与实时通信在Sp

python使用库爬取m3u8文件的示例

《python使用库爬取m3u8文件的示例》本文主要介绍了python使用库爬取m3u8文件的示例,可以使用requests、m3u8、ffmpeg等库,实现获取、解析、下载视频片段并合并等步骤,具有... 目录一、准备工作二、获取m3u8文件内容三、解析m3u8文件四、下载视频片段五、合并视频片段六、错误

gitlab安装及邮箱配置和常用使用方式

《gitlab安装及邮箱配置和常用使用方式》:本文主要介绍gitlab安装及邮箱配置和常用使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1.安装GitLab2.配置GitLab邮件服务3.GitLab的账号注册邮箱验证及其分组4.gitlab分支和标签的

SpringBoot3应用中集成和使用Spring Retry的实践记录

《SpringBoot3应用中集成和使用SpringRetry的实践记录》SpringRetry为SpringBoot3提供重试机制,支持注解和编程式两种方式,可配置重试策略与监听器,适用于临时性故... 目录1. 简介2. 环境准备3. 使用方式3.1 注解方式 基础使用自定义重试策略失败恢复机制注意事项

nginx启动命令和默认配置文件的使用

《nginx启动命令和默认配置文件的使用》:本文主要介绍nginx启动命令和默认配置文件的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录常见命令nginx.conf配置文件location匹配规则图片服务器总结常见命令# 默认配置文件启动./nginx

在Windows上使用qemu安装ubuntu24.04服务器的详细指南

《在Windows上使用qemu安装ubuntu24.04服务器的详细指南》本文介绍了在Windows上使用QEMU安装Ubuntu24.04的全流程:安装QEMU、准备ISO镜像、创建虚拟磁盘、配置... 目录1. 安装QEMU环境2. 准备Ubuntu 24.04镜像3. 启动QEMU安装Ubuntu4

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

Windows下C++使用SQLitede的操作过程

《Windows下C++使用SQLitede的操作过程》本文介绍了Windows下C++使用SQLite的安装配置、CppSQLite库封装优势、核心功能(如数据库连接、事务管理)、跨平台支持及性能优... 目录Windows下C++使用SQLite1、安装2、代码示例CppSQLite:C++轻松操作SQ

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.