树莓派,opencv,Picamera2利用舵机云台追踪特定颜色对象

2023-12-12 10:44

本文主要是介绍树莓派,opencv,Picamera2利用舵机云台追踪特定颜色对象,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、需要准备的硬件

  1. Raspiberry 4b
  2. 两个SG90 180度舵机(注意舵机的角度,最好是180度且带限位的,切勿选360度舵机)
  3. 二自由度舵机云台(如下图)
  4. Raspiberry CSI 摄像头
    组装后的效果:
    在这里插入图片描述

二、项目目标

追踪特定颜色的物体:
当物体移动时,摄像头通过控制两个伺服电机(分别是偏航和俯仰)把该物体放到视界的中心位置,我在这里追踪的是一支红色的铅笔。

三、具体步骤

3.1 获得被追踪对象的颜色参数

  1. 提前准备一张图片(如下图),可以直接用树莓派的CSI摄像头拍摄并保存,具体方法可以在我之前的文章里找到
    原始图片

  2. 利用下面的代码并通过调整滑块(Trackbar)获得红色铅笔的HSV颜色参数,为接下来的颜色追踪做准备

***color_detection.py***
import cv2
path='test_full.jpg'
cv2.namedWindow("TrackBar")def nothing(x):pass
#创建滑块控件
cv2.createTrackbar("Hue Min","TrackBar",0,179,nothing)
cv2.createTrackbar("Hue Max","TrackBar",179,179,nothing)
cv2.createTrackbar("Sat Min","TrackBar",0,255,nothing)
cv2.createTrackbar("Sat Max","TrackBar",255,255,nothing)
cv2.createTrackbar("Val Min","TrackBar",0,255,nothing)
cv2.createTrackbar("Val Max","TrackBar",255,255,nothing)while True:#读取目标图片image=cv2.imread(path)image=cv2.resize(image,(640,480))imgHSV=cv2.cvtColor(image,cv2.COLOR_BGR2HSV)hueLow=cv2.getTrackbarPos("Hue Min","TrackBar")hueHigh=cv2.getTrackbarPos("Hue Max","TrackBar")satLow=cv2.getTrackbarPos("Sat Min","TrackBar")satHigh=cv2.getTrackbarPos("Sat Max","TrackBar")valLow=cv2.getTrackbarPos("Val Min","TrackBar")valHigh=cv2.getTrackbarPos("Val Max","TrackBar")print(hueLow,hueHigh,satLow,satHigh,valLow,valHigh)#创建掩膜mask=cv2.inRange(imgHSV,(hueLow,satLow,valLow),(hueHigh,satHigh,valHigh))image=cv2.bitwise_and(image,image,mask=mask)#显示图像cv2.imshow('Origial',image)cv2.imshow('HSV',imgHSV)#按q键退出if cv2.waitKey(1)==ord('q'):break
cv2.destroyAllWindows() 
  1. 运行color_detection.py,并调整滑块(TrackBar)如下图,当然你的被追踪物体的颜色不同,参数也必然不同。
    滑块调整
    这时你会发现,红色铅笔被显示出来,其它部分被掩膜遮挡,记下Hue Min, Hui Max, Sat Min, Sat Max, Val Min, Val Max这六个数值在接下来的代码中会用到。
    在这里插入图片描述

3.2 目标追踪代码

  1. 输入color_detection.py里得到的六个参数到相应位置,注释里已经注明。
***color_tracking.py***
import cv2
from picamera2 import Picamera2
import time
import numpy as np
from servo import Servo
picam2 = Picamera2()#偏航伺服电机连接上GPIO19脚,俯仰伺服电机信号线连接到GPIO16脚上
pan=Servo(pin=19)
tilt=Servo(pin=16)panAngle=0
tiltAngle=0pan.set_angle(panAngle)
tilt.set_angle(tiltAngle)#初始化pi camera
dispW=1280
dispH=720
picam2.preview_configuration.main.size = (dispW,dispH)
picam2.preview_configuration.main.format = "RGB888"
picam2.preview_configuration.controls.FrameRate=30
picam2.preview_configuration.align()
picam2.configure("preview")
picam2.start()
fps=0
pos=(30,60)
font=cv2.FONT_HERSHEY_SIMPLEX
height=1.5
weight=3
myColor=(0,0,255)def nothing(x):passcv2.namedWindow('myTracker')
#输入color_detection.py里得到的六个参数到xxx位置,比如cv2.createTrackbar('Hue Low','myTracker',xxx,179,nothing)
cv2.createTrackbar('Hue Low','myTracker',56,179,nothing)
cv2.createTrackbar('Hue High','myTracker',179,179,nothing)
cv2.createTrackbar('Sat Low','myTracker',165,255,nothing)
cv2.createTrackbar('Sat High','myTracker',255,255,nothing)
cv2.createTrackbar('Val Low','myTracker',77,255,nothing)
cv2.createTrackbar('Val High','myTracker',255,255,nothing)while True:tStart=time.time()#获取取摄像头图片frame= picam2.capture_array()frame=cv2.flip(frame,1)frameHSV=cv2.cvtColor(frame,cv2.COLOR_BGR2HSV)cv2.putText(frame,str(int(fps))+' FPS',pos,font,height,myColor,weight)hueLow=cv2.getTrackbarPos('Hue Low','myTracker')satLow=cv2.getTrackbarPos('Sat Low','myTracker')valLow=cv2.getTrackbarPos('Val Low','myTracker')hueHigh=cv2.getTrackbarPos('Hue High','myTracker')satHigh=cv2.getTrackbarPos('Sat High','myTracker')valHigh=cv2.getTrackbarPos('Val High','myTracker')lowerBound=np.array([hueLow,satLow,valLow])upperBound=np.array([hueHigh,satHigh,valHigh])myMask=cv2.inRange(frameHSV,lowerBound,upperBound)myMaskSmall=cv2.resize(myMask,(int(dispW/2),int(dispH/2)))myObject=cv2.bitwise_and(frame,frame, mask=myMask)myObjectSmall=cv2.resize(myObject,(int(dispW/2),int(dispH/2)))contours,junk=cv2.findContours(myMask,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)if len(contours)>0:contours=sorted(contours,key=lambda x:cv2.contourArea(x),reverse=True)#cv2.drawContours(frame,contours,-1,(255,0,0),3)contour=contours[0]x,y,w,h=cv2.boundingRect(contour)cv2.rectangle(frame,(x,y),(x+w,y+h),(0,0,255),3)#偏航电机纠偏X轴方向上的偏差,大于30度,偏航角度减小,小于-30度,偏航角度增加errorX=dispW/2-(x+w/2)if errorX>30:panAngle=panAngle-1if panAngle<-90:panAngle=-90pan.set_angle(panAngle)if errorX<-30:panAngle=panAngle+1if panAngle>90:panAngle=90pan.set_angle(panAngle)#俯仰电机纠偏Y轴方向上的偏差,大于30度,俯仰角度减小,小于-30度,俯仰角度增加errorY=dispH/2-(y+h/2)if errorY>30:tiltAngle=tiltAngle-1if tiltAngle<-90:tiltAngle=-90tilt.set_angle(tiltAngle)if errorY<-30:tiltAngle=tiltAngle+1if tiltAngle>90:tiltAngle=90tilt.set_angle(tiltAngle)cv2.imshow('Camera',frame)cv2.imshow('Mask',myMaskSmall)cv2.imshow('My Object',myObjectSmall)#按q键退出if cv2.waitKey(1)==ord('q'):pan.stop()tilt.stop()picam2.stop()breaktEnd=time.time()loopTime=tEnd-tStartfps=.9*fps + .1*(1/loopTime)
cv2.destroyAllWindows()
  1. 上述代码中的from servo import Servo导入servo,这个库是没有的,我们要手动创建这个库,在object_tracking.py所在的目录下新建servo.py文件,复制下面的代码到文件中
#!/usr/bin/env python3
import pigpio
from time import sleep
# Start the pigpiod daemon
import subprocess
result = None
status = 1
for x in range(3):p = subprocess.Popen('sudo pigpiod', shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)result = p.stdout.read().decode('utf-8')status = p.poll()if status == 0:breaksleep(0.2)
if status != 0:print(status, result)
'''
> Use the DMA PWM of the pigpio library to drive the servo
> Map the servo angle (0 ~ 180 degree) to (-90 ~ 90 degree)'''class Servo():MAX_PW = 1250  # 0.5/20*100MIN_PW = 250 # 2.5/20*100_freq = 50 # 50 Hz, 20msdef __init__(self, pin, min_angle=-90, max_angle=90):self.pi = pigpio.pi()self.pin = pin self.pi.set_PWM_frequency(self.pin, self._freq)self.pi.set_PWM_range(self.pin, 10000)      self.angle = 0self.max_angle = max_angleself.min_angle = min_angleself.pi.set_PWM_dutycycle(self.pin, 0)def set_angle(self, angle):if angle > self.max_angle:angle = self.max_angleelif angle < self.min_angle:angle = self.min_angleself.angle = angleduty = self.map(angle, -90, 90, 250, 1250)self.pi.set_PWM_dutycycle(self.pin, duty)def get_angle(self):return self.angledef stop(self):self.pi.set_PWM_dutycycle(self.pin, 0)self.pi.stop()# will be called automatically when the object is deleted# def __del__(self):#     passdef map(self, x, in_min, in_max, out_min, out_max):return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_minif __name__ =='__main__':from vilib import Vilib# Vilib.camera_start(vflip=True,hflip=True) # Vilib.display(local=True,web=True)pan = Servo(pin=13, max_angle=90, min_angle=-90)tilt = Servo(pin=12, max_angle=30, min_angle=-90)panAngle = 0tiltAngle = 0pan.set_angle(panAngle)tilt.set_angle(tiltAngle)sleep(1)while True:for angle in range(0, 90, 1):pan.set_angle(angle)tilt.set_angle(angle)sleep(.01)sleep(.5)for angle in range(90, -90, -1):pan.set_angle(angle)tilt.set_angle(angle)sleep(.01)sleep(.5)for angle in range(-90, 0, 1):pan.set_angle(angle)tilt.set_angle(angle)sleep(.01)sleep(.5)
  1. 运行object_tracking.py,移动红色铅笔,摄像头就会自动追踪该对象
    在这里插入图片描述

这篇关于树莓派,opencv,Picamera2利用舵机云台追踪特定颜色对象的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/484322

相关文章

Linux从文件中提取特定内容的实用技巧分享

《Linux从文件中提取特定内容的实用技巧分享》在日常数据处理和配置文件管理中,我们经常需要从大型文件中提取特定内容,本文介绍的提取特定行技术正是这些高级操作的基础,以提取含有1的简单需求为例,我们可... 目录引言1、方法一:使用 grep 命令1.1 grep 命令基础1.2 命令详解1.3 高级用法2

javaSE类和对象进阶用法举例详解

《javaSE类和对象进阶用法举例详解》JavaSE的面向对象编程是软件开发中的基石,它通过类和对象的概念,实现了代码的模块化、可复用性和灵活性,:本文主要介绍javaSE类和对象进阶用法的相关资... 目录前言一、封装1.访问限定符2.包2.1包的概念2.2导入包2.3自定义包2.4常见的包二、stati

MySQL 强制使用特定索引的操作

《MySQL强制使用特定索引的操作》MySQL可通过FORCEINDEX、USEINDEX等语法强制查询使用特定索引,但优化器可能不采纳,需结合EXPLAIN分析执行计划,避免性能下降,注意版本差异... 目录1. 使用FORCE INDEX语法2. 使用USE INDEX语法3. 使用IGNORE IND

OpenCV在Java中的完整集成指南分享

《OpenCV在Java中的完整集成指南分享》本文详解了在Java中集成OpenCV的方法,涵盖jar包导入、dll配置、JNI路径设置及跨平台兼容性处理,提供了图像处理、特征检测、实时视频分析等应用... 目录1. OpenCV简介与应用领域1.1 OpenCV的诞生与发展1.2 OpenCV的应用领域2

在Java中使用OpenCV实践

《在Java中使用OpenCV实践》用户分享了在Java项目中集成OpenCV4.10.0的实践经验,涵盖库简介、Windows安装、依赖配置及灰度图测试,强调其在图像处理领域的多功能性,并计划后续探... 目录前言一 、OpenCV1.简介2.下载与安装3.目录说明二、在Java项目中使用三 、测试1.测

在Linux中改变echo输出颜色的实现方法

《在Linux中改变echo输出颜色的实现方法》在Linux系统的命令行环境下,为了使输出信息更加清晰、突出,便于用户快速识别和区分不同类型的信息,常常需要改变echo命令的输出颜色,所以本文给大家介... 目python录在linux中改变echo输出颜色的方法技术背景实现步骤使用ANSI转义码使用tpu

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

MySQL查询JSON数组字段包含特定字符串的方法

《MySQL查询JSON数组字段包含特定字符串的方法》在MySQL数据库中,当某个字段存储的是JSON数组,需要查询数组中包含特定字符串的记录时传统的LIKE语句无法直接使用,下面小编就为大家介绍两种... 目录问题背景解决方案对比1. 精确匹配方案(推荐)2. 模糊匹配方案参数化查询示例使用场景建议性能优

MySQL追踪数据库表更新操作来源的全面指南

《MySQL追踪数据库表更新操作来源的全面指南》本文将以一个具体问题为例,如何监测哪个IP来源对数据库表statistics_test进行了UPDATE操作,文内探讨了多种方法,并提供了详细的代码... 目录引言1. 为什么需要监控数据库更新操作2. 方法1:启用数据库审计日志(1)mysql/mariad