[cleanrl] ppo_continuous_action源码解析

2023-12-12 05:44

本文主要是介绍[cleanrl] ppo_continuous_action源码解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 import库(略)

import os
import random
import time
from dataclasses import dataclassimport gymnasium as gym
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import tyro
from torch.distributions.normal import Normal
from torch.utils.tensorboard import SummaryWriter

2 Args类(略)

定义了所有有关模型的参数,参数含义见英文注释。

@dataclass
class Args:exp_name: str = os.path.basename(__file__)[: -len(".py")]"""the name of this experiment"""seed: int = 1"""seed of the experiment"""torch_deterministic: bool = True"""if toggled, `torch.backends.cudnn.deterministic=False`"""cuda: bool = True"""if toggled, cuda will be enabled by default"""track: bool = False"""if toggled, this experiment will be tracked with Weights and Biases"""wandb_project_name: str = "cleanRL""""the wandb's project name"""wandb_entity: str = None"""the entity (team) of wandb's project"""capture_video: bool = False"""whether to capture videos of the agent performances (check out `videos` folder)"""save_model: bool = False"""whether to save model into the `runs/{run_name}` folder"""upload_model: bool = False"""whether to upload the saved model to huggingface"""hf_entity: str = """""the user or org name of the model repository from the Hugging Face Hub"""# Algorithm specific argumentsenv_id: str = "HalfCheetah-v4""""the id of the environment"""total_timesteps: int = 1000000"""total timesteps of the experiments"""learning_rate: float = 3e-4"""the learning rate of the optimizer"""num_envs: int = 1"""the number of parallel game environments"""num_steps: int = 2048"""the number of steps to run in each environment per policy rollout"""anneal_lr: bool = True"""Toggle learning rate annealing for policy and value networks"""gamma: float = 0.99"""the discount factor gamma"""gae_lambda: float = 0.95"""the lambda for the general advantage estimation"""num_minibatches: int = 32"""the number of mini-batches"""update_epochs: int = 10"""the K epochs to update the policy"""norm_adv: bool = True"""Toggles advantages normalization"""clip_coef: float = 0.2"""the surrogate clipping coefficient"""clip_vloss: bool = True"""Toggles whether or not to use a clipped loss for the value function, as per the paper."""ent_coef: float = 0.0"""coefficient of the entropy"""vf_coef: float = 0.5"""coefficient of the value function"""max_grad_norm: float = 0.5"""the maximum norm for the gradient clipping"""target_kl: float = None"""the target KL divergence threshold"""# to be filled in runtimebatch_size: int = 0"""the batch size (computed in runtime)"""minibatch_size: int = 0"""the mini-batch size (computed in runtime)"""num_iterations: int = 0"""the number of iterations (computed in runtime)"""

3 定义Agent

使用gym.wrappers对原始gym环境进行修改:

  • FlattenObservation:将obs矩阵展平为1维向量
  • RecordEpisodeStatistics:记录episode的统计数据
  • ClipAction:剪裁action以满足action_space的要求
  • NormalizeObservation:对obs矩阵进行归一化
  • TransformObservation:对obs矩阵进行变换
  • NormalizeReward:对reward进行归一化
  • TransformReward:对reward进行变换
def make_env(env_id, idx, capture_video, run_name, gamma):def thunk():if capture_video and idx == 0:env = gym.make(env_id, render_mode="rgb_array")env = gym.wrappers.RecordVideo(env, f"videos/{run_name}")else:env = gym.make(env_id)env = gym.wrappers.FlattenObservation(env)  # deal with dm_control's Dict observation spaceenv = gym.wrappers.RecordEpisodeStatistics(env)env = gym.wrappers.ClipAction(env)env = gym.wrappers.NormalizeObservation(env)env = gym.wrappers.TransformObservation(env, lambda obs: np.clip(obs, -10, 10))env = gym.wrappers.NormalizeReward(env, gamma=gamma)env = gym.wrappers.TransformReward(env, lambda reward: np.clip(reward, -10, 10))return envreturn thunk

初始化神经网络中的每层的参数。

def layer_init(layer, std=np.sqrt(2), bias_const=0.0):torch.nn.init.orthogonal_(layer.weight, std)torch.nn.init.constant_(layer.bias, bias_const)return layer

PPO(连续动作)的Agent类,Actor-Critic结构,其中Actor网络和Critic网络均基于MLP构建,激活函数使用Tanh

Critic网络的输入尺寸为(batch_size, obs_dim, 64),输出尺寸为(batch_size, 1),作用是形成obs到value的映射。向外暴露get_value函数以计算状态价值。

Actor网络包含两部分:

  • self.action_mean将obs映射到动作均值,输入尺寸为(batch_size, obs_dim, 64),输出尺寸为(batch_size, action_dim)
  • self.actor_logstd是一个(1, action_dim)大小的Parameter,用于形成动作方差的对数(后面需要对其使用torch.exp保证其为正数)

在cleanrl的实现里,Actor网络使用对角高斯分布来生成连续动作的分布,即根据Normal(action_mean, actor_std)对动作进行抽样。

get_action_and_value函数中计算了:

  • 动作分布probs
  • 动作采样probs.sample()
  • 对数似然probs.log_prob(action).sum(1)
  • probs.entropy().sum(1)
  • 状态价值self.critic(x)

在对数似然和熵的计算中,sum(1)用于计算多个相互独立动作的联合概率。

class Agent(nn.Module):def __init__(self, envs):super().__init__()self.critic = nn.Sequential(layer_init(nn.Linear(np.array(envs.single_observation_space.shape).prod(), 64)),nn.Tanh(),layer_init(nn.Linear(64, 64)),nn.Tanh(),layer_init(nn.Linear(64, 1), std=1.0),)self.actor_mean = nn.Sequential(layer_init(nn.Linear(np.array(envs.single_observation_space.shape).prod(), 64)),nn.Tanh(),layer_init(nn.Linear(64, 64)),nn.Tanh(),layer_init(nn.Linear(64, np.prod(envs.single_action_space.shape)), std=0.01),)self.actor_logstd = nn.Parameter(torch.zeros(1, np.prod(envs.single_action_space.shape)))def get_value(self, x):return self.critic(x)def get_action_and_value(self, x, action=None):action_mean = self.actor_mean(x)action_logstd = self.actor_logstd.expand_as(action_mean)action_std = torch.exp(action_logstd)probs = Normal(action_mean, action_std)if action is None:action = probs.sample()return action, probs.log_prob(action).sum(1), probs.entropy().sum(1), self.critic(x)

4 训练Agent

设置一些参数,稍微解释一下几个参数的含义:

  • batch_sizenum_envsnum_steps的乘积,表示跑一次迭代能收集到多少样本
  • minibatch_size:每次训练都从大的batch中抽取小的minibatch进行训练
  • num_iterations:整个训练过程跑几轮迭代
args = tyro.cli(Args)
args.batch_size = int(args.num_envs * args.num_steps)
args.minibatch_size = int(args.batch_size // args.num_minibatches)
args.num_iterations = args.total_timesteps // args.batch_size
run_name = f"{args.env_id}__{args.exp_name}__{args.seed}__{int(time.time())}"
if args.track:import wandbwandb.init(project=args.wandb_project_name,entity=args.wandb_entity,sync_tensorboard=True,config=vars(args),name=run_name,monitor_gym=True,save_code=True,)
writer = SummaryWriter(f"runs/{run_name}")
writer.add_text("hyperparameters","|param|value|\n|-|-|\n%s" % ("\n".join([f"|{key}|{value}|" for key, value in vars(args).items()])),
)# TRY NOT TO MODIFY: seeding
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.backends.cudnn.deterministic = args.torch_deterministicdevice = torch.device("cuda" if torch.cuda.is_available() and args.cuda else "cpu")

实例化envs、agent以及optim。

# env setup
envs = gym.vector.SyncVectorEnv([make_env(args.env_id, i, args.capture_video, run_name, args.gamma) for i in range(args.num_envs)]
)
assert isinstance(envs.single_action_space, gym.spaces.Box), "only continuous action space is supported"agent = Agent(envs).to(device)
optimizer = optim.Adam(agent.parameters(), lr=args.learning_rate, eps=1e-5)

定义需要收集的信息

  • obs:观测到的环境状态
  • actions:动作采样值
  • logprobs:动作采样的对数似然
  • rewards:即时奖励
  • dones:episode是否结束
  • values:状态价值
# ALGO Logic: Storage setup
obs = torch.zeros((args.num_steps, args.num_envs) + envs.single_observation_space.shape).to(device)
actions = torch.zeros((args.num_steps, args.num_envs) + envs.single_action_space.shape).to(device)
logprobs = torch.zeros((args.num_steps, args.num_envs)).to(device)
rewards = torch.zeros((args.num_steps, args.num_envs)).to(device)
dones = torch.zeros((args.num_steps, args.num_envs)).to(device)
values = torch.zeros((args.num_steps, args.num_envs)).to(device)

next_obs存储每步的观测结果,next_done存储每步是否导致episode结束。这两个变量用于计算由最后一个动作导致的下一个状态的价值。

# TRY NOT TO MODIFY: start the game
global_step = 0
start_time = time.time()
next_obs, _ = envs.reset(seed=args.seed)
next_obs = torch.Tensor(next_obs).to(device)
next_done = torch.zeros(args.num_envs).to(device)

step的for循环里,Actor网络和Critic网络基于当前策略(旧策略)收集样本。因为旧策略不作为参数参与到梯度下降过程,因此需要torch.no_grad()包围相关数值的计算过程。

for iteration in range(1, args.num_iterations + 1):# Annealing the rate if instructed to do so.if args.anneal_lr:frac = 1.0 - (iteration - 1.0) / args.num_iterationslrnow = frac * args.learning_rateoptimizer.param_groups[0]["lr"] = lrnowfor step in range(0, args.num_steps):global_step += args.num_envsobs[step] = next_obsdones[step] = next_done# ALGO LOGIC: action logicwith torch.no_grad():action, logprob, _, value = agent.get_action_and_value(next_obs)values[step] = value.flatten()actions[step] = actionlogprobs[step] = logprob# TRY NOT TO MODIFY: execute the game and log data.next_obs, reward, terminations, truncations, infos = envs.step(action.cpu().numpy())next_done = np.logical_or(terminations, truncations)rewards[step] = torch.tensor(reward).to(device).view(-1)next_obs, next_done = torch.Tensor(next_obs).to(device), torch.Tensor(next_done).to(device)if "final_info" in infos:for info in infos["final_info"]:if info and "episode" in info:print(f"global_step={global_step}, episodic_return={info['episode']['r']}")writer.add_scalar("charts/episodic_return", info["episode"]["r"], global_step)writer.add_scalar("charts/episodic_length", info["episode"]["l"], global_step)

这部分基于value、reward计算GAE(广义优势估计)。从最后一个reward开始,通过迭代计算:

  • δ t = r t + γ ∗ V ( s t + 1 ) − V ( s t ) \delta_t = r_t+\gamma * V(s_{t+1})-V(s_t) δt=rt+γV(st+1)V(st)
  • a t = δ t + γ ∗ λ ∗ a t + 1 a_t = \delta_t + \gamma * \lambda * a_{t+1} at=δt+γλat+1
###############################################
for iteration in range(1, args.num_iterations + 1):【在iteration的for循环中拼接上一段代码】
################################################ bootstrap value if not donewith torch.no_grad():next_value = agent.get_value(next_obs).reshape(1, -1)advantages = torch.zeros_like(rewards).to(device)lastgaelam = 0for t in reversed(range(args.num_steps)):if t == args.num_steps - 1:nextnonterminal = 1.0 - next_donenextvalues = next_valueelse:nextnonterminal = 1.0 - dones[t + 1]nextvalues = values[t + 1]delta = rewards[t] + args.gamma * nextvalues * nextnonterminal - values[t]advantages[t] = lastgaelam = delta + args.gamma * args.gae_lambda * nextnonterminal * lastgaelamreturns = advantages + values

原先的矩阵都是(num_envs, num_steps, XX_dim)的形状,现在转换成(batch_size, XX_dim)的形状,后面要基于batch划分minibatch进行训练。

###############################################
for iteration in range(1, args.num_iterations + 1):【在iteration的for循环中拼接上一段代码】
################################################ flatten the batchb_obs = obs.reshape((-1,) + envs.single_observation_space.shape)b_logprobs = logprobs.reshape(-1)b_actions = actions.reshape((-1,) + envs.single_action_space.shape)b_advantages = advantages.reshape(-1)b_returns = returns.reshape(-1)b_values = values.reshape(-1)# Optimizing the policy and value networkb_inds = np.arange(args.batch_size)clipfracs = []

minibatch的划分是基于b_inds进行的,所以先使用shuffle进行打乱,然后在start的for循环里每次抽取minibatch,计算新的newlogprobentropynewvalue。根据新的和旧的logprob计算ratio,用于后面的PPO截断。

###############################################
for iteration in range(1, args.num_iterations + 1):......
###############################################for epoch in range(args.update_epochs):np.random.shuffle(b_inds)for start in range(0, args.batch_size, args.minibatch_size):end = start + args.minibatch_sizemb_inds = b_inds[start:end]_, newlogprob, entropy, newvalue = agent.get_action_and_value(b_obs[mb_inds], b_actions[mb_inds])logratio = newlogprob - b_logprobs[mb_inds]ratio = logratio.exp()

首先采用kl-approx使用蒙特卡洛近似KL散度approx_kl,然后获取minibatch的advantage,按需归一化。最后进行PPO截断,计算policy loss。

###############################################
for iteration in range(1, args.num_iterations + 1):......for epoch in range(args.update_epochs):......for start in range(0, args.batch_size, args.minibatch_size):【在start的for循环中拼接上一段代码】
###############################################with torch.no_grad():# calculate approx_kl http://joschu.net/blog/kl-approx.htmlold_approx_kl = (-logratio).mean()approx_kl = ((ratio - 1) - logratio).mean()clipfracs += [((ratio - 1.0).abs() > args.clip_coef).float().mean().item()]mb_advantages = b_advantages[mb_inds]if args.norm_adv:mb_advantages = (mb_advantages - mb_advantages.mean()) / (mb_advantages.std() + 1e-8)# Policy losspg_loss1 = -mb_advantages * ratiopg_loss2 = -mb_advantages * torch.clamp(ratio, 1 - args.clip_coef, 1 + args.clip_coef)pg_loss = torch.max(pg_loss1, pg_loss2).mean()

根据旧的b_returns和新的newvalue计算value loss。当然这里也提供了value loss clip。

###############################################
for iteration in range(1, args.num_iterations + 1):......for epoch in range(args.update_epochs):......for start in range(0, args.batch_size, args.minibatch_size):【在start的for循环中拼接上一段代码】
################################################ Value lossnewvalue = newvalue.view(-1)if args.clip_vloss:v_loss_unclipped = (newvalue - b_returns[mb_inds]) ** 2v_clipped = b_values[mb_inds] + torch.clamp(newvalue - b_values[mb_inds],-args.clip_coef,args.clip_coef,)v_loss_clipped = (v_clipped - b_returns[mb_inds]) ** 2v_loss_max = torch.max(v_loss_unclipped, v_loss_clipped)v_loss = 0.5 * v_loss_max.mean()else:v_loss = 0.5 * ((newvalue - b_returns[mb_inds]) ** 2).mean()

根据policy loss、value loss和entropy加权求和得到总的loss,然后反向传播优化参数。在之前计算了新旧策略之间的KL散度,这里可以利用KL散度实现early stopping,即KL散度大于阈值则停止当前batch的训练。(当然也可以停止掉当前minibatch的训练)

###############################################
for iteration in range(1, args.num_iterations + 1):......for epoch in range(args.update_epochs):......for start in range(0, args.batch_size, args.minibatch_size):【在start的for循环中拼接上一段代码】
###############################################entropy_loss = entropy.mean()loss = pg_loss - args.ent_coef * entropy_loss + v_loss * args.vf_coefoptimizer.zero_grad()loss.backward()nn.utils.clip_grad_norm_(agent.parameters(), args.max_grad_norm)optimizer.step()if args.target_kl is not None and approx_kl > args.target_kl:break

tensorboard记录数据,没什么好说的。

###############################################
for iteration in range(1, args.num_iterations + 1):【在iteration的for循环中拼接上一段代码】
###############################################y_pred, y_true = b_values.cpu().numpy(), b_returns.cpu().numpy()var_y = np.var(y_true)explained_var = np.nan if var_y == 0 else 1 - np.var(y_true - y_pred) / var_y# TRY NOT TO MODIFY: record rewards for plotting purposeswriter.add_scalar("charts/learning_rate", optimizer.param_groups[0]["lr"], global_step)writer.add_scalar("losses/value_loss", v_loss.item(), global_step)writer.add_scalar("losses/policy_loss", pg_loss.item(), global_step)writer.add_scalar("losses/entropy", entropy_loss.item(), global_step)writer.add_scalar("losses/old_approx_kl", old_approx_kl.item(), global_step)writer.add_scalar("losses/approx_kl", approx_kl.item(), global_step)writer.add_scalar("losses/clipfrac", np.mean(clipfracs), global_step)writer.add_scalar("losses/explained_variance", explained_var, global_step)print("SPS:", int(global_step / (time.time() - start_time)))writer.add_scalar("charts/SPS", int(global_step / (time.time() - start_time)), global_step)

模型保存的一些操作,也没什么好说的。

if args.save_model:model_path = f"runs/{run_name}/{args.exp_name}.cleanrl_model"torch.save(agent.state_dict(), model_path)print(f"model saved to {model_path}")from cleanrl_utils.evals.ppo_eval import evaluateepisodic_returns = evaluate(model_path,make_env,args.env_id,eval_episodes=10,run_name=f"{run_name}-eval",Model=Agent,device=device,gamma=args.gamma,)for idx, episodic_return in enumerate(episodic_returns):writer.add_scalar("eval/episodic_return", episodic_return, idx)if args.upload_model:from cleanrl_utils.huggingface import push_to_hubrepo_name = f"{args.env_id}-{args.exp_name}-seed{args.seed}"repo_id = f"{args.hf_entity}/{repo_name}" if args.hf_entity else repo_namepush_to_hub(args, episodic_returns, repo_id, "PPO", f"runs/{run_name}", f"videos/{run_name}-eval")envs.close()
writer.close()

这篇关于[cleanrl] ppo_continuous_action源码解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/483445

相关文章

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

一文解析C#中的StringSplitOptions枚举

《一文解析C#中的StringSplitOptions枚举》StringSplitOptions是C#中的一个枚举类型,用于控制string.Split()方法分割字符串时的行为,核心作用是处理分割后... 目录C#的StringSplitOptions枚举1.StringSplitOptions枚举的常用

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

MyBatis延迟加载与多级缓存全解析

《MyBatis延迟加载与多级缓存全解析》文章介绍MyBatis的延迟加载与多级缓存机制,延迟加载按需加载关联数据提升性能,一级缓存会话级默认开启,二级缓存工厂级支持跨会话共享,增删改操作会清空对应缓... 目录MyBATis延迟加载策略一对多示例一对多示例MyBatis框架的缓存一级缓存二级缓存MyBat

前端缓存策略的自解方案全解析

《前端缓存策略的自解方案全解析》缓存从来都是前端的一个痛点,很多前端搞不清楚缓存到底是何物,:本文主要介绍前端缓存的自解方案,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、为什么“清缓存”成了技术圈的梗二、先给缓存“把个脉”:浏览器到底缓存了谁?三、设计思路:把“发版”做成“自愈”四、代码

Java集合之Iterator迭代器实现代码解析

《Java集合之Iterator迭代器实现代码解析》迭代器Iterator是Java集合框架中的一个核心接口,位于java.util包下,它定义了一种标准的元素访问机制,为各种集合类型提供了一种统一的... 目录一、什么是Iterator二、Iterator的核心方法三、基本使用示例四、Iterator的工

Java JDK Validation 注解解析与使用方法验证

《JavaJDKValidation注解解析与使用方法验证》JakartaValidation提供了一种声明式、标准化的方式来验证Java对象,与框架无关,可以方便地集成到各种Java应用中,... 目录核心概念1. 主要注解基本约束注解其他常用注解2. 核心接口使用方法1. 基本使用添加依赖 (Maven

Java中的分布式系统开发基于 Zookeeper 与 Dubbo 的应用案例解析

《Java中的分布式系统开发基于Zookeeper与Dubbo的应用案例解析》本文将通过实际案例,带你走进基于Zookeeper与Dubbo的分布式系统开发,本文通过实例代码给大家介绍的非常详... 目录Java 中的分布式系统开发基于 Zookeeper 与 Dubbo 的应用案例一、分布式系统中的挑战二