opencv 特征点检测与匹配-Harris角点检测+shi-Tomasi角点检测

2023-12-12 04:50

本文主要是介绍opencv 特征点检测与匹配-Harris角点检测+shi-Tomasi角点检测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

opencv 特征检测的应用场景

  • 图像搜索,如以图搜图

  • 拼图游戏

  • 图像拼接,将两个有关联的图拼接到一起

拼图方法

  • 寻找特征
  • 特征是唯一的
  • 可追踪的
  • 能比较的

在这里插入图片描述

  • 平坦部分很难找到它在原图的位置
  • 边缘相比平坦要好找一些,但也不能一下确定
  • 角点可以一下就能找到其在原图的位置

什么是特征

图像特征就是指有意义的图像区域,具有独特性,易于识别性,比如角点、斑点以及高密度区

角点

  • 在特征中最重要的是角点
  • 灰度梯度的最大值对应的像素
  • 两条线的交点
  • 极值点(一阶导数最大,但二阶导数为0)

Harris角点检测

在这里插入图片描述
Harris点

  • 光滑地区,无论向哪个移动,衡量系数不变
  • 边缘地区,垂直边缘移动时,衡量系统剧烈变化
  • 在交点处,往那个方向移动,衡量系统都发生剧烈变化

API

  • cornerHarrris(img,dst,blockSize,ksize,k)
  • blockSize: 检测窗口大小
  • ksize: Sobel的卷积核
  • k 权重系数,经验值,一般取0.02-0.04之间
import cv2 as cv
import numpy as np# 读取文件
img = cv.imread(r'C:\Users\Administrator\Desktop\hello.jpg')
# 灰度化
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)# Harris角点检测
dst = cv.cornerHarris(gray,blockSize=2, ksize=3, k=0.04)img[dst > 0.01*dst.max()] = [0, 0, 255]cv.imshow('harris', img)
cv.waitKey(0)

在这里插入图片描述

shi-Tomasi角点检测

  • shi- tomasi是Harris角点检测的改进
  • Harris角点检测算的稳定性和k有关,而k是个经验值,不好设定最佳值

goodFeaturesToTrack(img,maxCorners,…)

  • maxCorners:角点的最大数,值为0表示无限制
  • qualityLevel:小于1.0的正数,一般在0.01-0.1之间
  • minDistance:角之间最小欧式距离,忽略小于此距离的点
  • mask: 感兴趣的区域
  • blockSize:检测窗口
  • useHarrisDectector:是否使用Harris算法
  • k :默认是0.04
import cv2 as cv
import numpy as np# 读取文件
img = cv.imread(r'C:\Users\Administrator\Desktop\hello.jpg')
# 灰度化
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)# Harris角点检测
# dst = cv.cornerHarris(gray,blockSize=2, ksize=3, k=0.04)# shi-Tomasi角点检测
corners = cv.goodFeaturesToTrack(gray, maxCorners=1000, qualityLevel=0.01, minDistance=10)
# img[dst > 0.01*dst.max()] = [0, 0, 255]
corners= np.int0(corners)
print(corners)
for i in corners:x, y = i.ravel()cv.circle(img, (x, y), 3, (0, 255, 0),-1)cv.imshow('harris', img)
cv.waitKey(0)

在这里插入图片描述

在这里插入图片描述

这篇关于opencv 特征点检测与匹配-Harris角点检测+shi-Tomasi角点检测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/483291

相关文章

C#自动化实现检测并删除PDF文件中的空白页面

《C#自动化实现检测并删除PDF文件中的空白页面》PDF文档在日常工作和生活中扮演着重要的角色,本文将深入探讨如何使用C#编程语言,结合强大的PDF处理库,自动化地检测并删除PDF文件中的空白页面,感... 目录理解PDF空白页的定义与挑战引入Spire.PDF for .NET库核心实现:检测并删除空白页

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

SpringBoot3匹配Mybatis3的错误与解决方案

《SpringBoot3匹配Mybatis3的错误与解决方案》文章指出SpringBoot3与MyBatis3兼容性问题,因未更新MyBatis-Plus依赖至SpringBoot3专用坐标,导致类冲... 目录SpringBoot3匹配MyBATis3的错误与解决mybatis在SpringBoot3如果

Python脚本轻松实现检测麦克风功能

《Python脚本轻松实现检测麦克风功能》在进行音频处理或开发需要使用麦克风的应用程序时,确保麦克风功能正常是非常重要的,本文将介绍一个简单的Python脚本,能够帮助我们检测本地麦克风的功能,需要的... 目录轻松检测麦克风功能脚本介绍一、python环境准备二、代码解析三、使用方法四、知识扩展轻松检测麦

OpenCV在Java中的完整集成指南分享

《OpenCV在Java中的完整集成指南分享》本文详解了在Java中集成OpenCV的方法,涵盖jar包导入、dll配置、JNI路径设置及跨平台兼容性处理,提供了图像处理、特征检测、实时视频分析等应用... 目录1. OpenCV简介与应用领域1.1 OpenCV的诞生与发展1.2 OpenCV的应用领域2

在Java中使用OpenCV实践

《在Java中使用OpenCV实践》用户分享了在Java项目中集成OpenCV4.10.0的实践经验,涵盖库简介、Windows安装、依赖配置及灰度图测试,强调其在图像处理领域的多功能性,并计划后续探... 目录前言一 、OpenCV1.简介2.下载与安装3.目录说明二、在Java项目中使用三 、测试1.测

Linux系统性能检测命令详解

《Linux系统性能检测命令详解》本文介绍了Linux系统常用的监控命令(如top、vmstat、iostat、htop等)及其参数功能,涵盖进程状态、内存使用、磁盘I/O、系统负载等多维度资源监控,... 目录toppsuptimevmstatIOStatiotopslabtophtopdstatnmon

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

C++ 检测文件大小和文件传输的方法示例详解

《C++检测文件大小和文件传输的方法示例详解》文章介绍了在C/C++中获取文件大小的三种方法,推荐使用stat()函数,并详细说明了如何设计一次性发送压缩包的结构体及传输流程,包含CRC校验和自动解... 目录检测文件的大小✅ 方法一:使用 stat() 函数(推荐)✅ 用法示例:✅ 方法二:使用 fsee

Python如何将OpenCV摄像头视频流通过浏览器播放

《Python如何将OpenCV摄像头视频流通过浏览器播放》:本文主要介绍Python如何将OpenCV摄像头视频流通过浏览器播放的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完... 目录方法1:使用Flask + MJPEG流实现代码使用方法优点缺点方法2:使用WebSocket传输视