STL——空间配置器(SGI-STL)

2023-12-12 04:32
文章标签 配置 空间 stl sgi

本文主要是介绍STL——空间配置器(SGI-STL),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、 空间配置器标准接口

参见《STL源码剖析》第二章-2.1。<memory>文件。

二、具备次配置力的SGI空间配置器

1. SGI STL的配置器与众不同,也与标准规范不同,其名称是alloc而非allocator,而且不接受任何参数(虽然SGI也定义有一个符合部分标准、名为sllocator的配置器,但SGI自己从未用过它,也不建议使用,主要因为效率不佳,它只是基层内存配置/释放行为(也就是::operator new和 ::operator delete)的一层薄薄的包装,并没有考虑到任何效率上的强化)。这并不会带来什么困扰:我们通常很少需要自行指定配置器名称,而SGI STL的每一个容器都已经指定其缺省的空间配置器为alloc。

复制代码
// 在程序中要明白采用SGI配置器,则不能采用标准写法:
vector <int, std::allocator<int> > iv;    // 标准写法,in VC or CB
vector <int, std::alloc> iv;        // SGI,in GCC// SGI STL 每一个容器都已经指定缺省空间配置器
template <class T, class Alloc = alloc >     // 缺省使用alloc为配置器
class vector { ... };
复制代码

 2. SGI特殊的空间配置器——std::alloc

一般而言,我们所习惯的C++内存配置操作和释放操作是这样的:

class Foo { ... };
Foo* pf = new Foo;       // 配置内存,然后构造对象
delete pf;            // 将对象析构,然后释放内存

这其中的new算式内含两阶段操作:(1)调用::operator new 配置内存,(2)调用Foo::Foo() 构造对象内容。delete算式也内含两阶段操作:(1)调用Foo::~Foo() 将对象析构;(2)调用 ::operator delete 释放内存。
为了精密分工,STL allocator 决定将这两个阶段操作区分开来。内存配置操作由alloc::allocate()负责,内存释放操作由 alloc::deallocate() 负责;对象构造操作由 ::construct()负责,对象析构操作由::destroy()负责。STL配置器定义于<memory>之中,实现在于内含的<stl_alloc.h> 和 <stl_construct.h> 两个文件之中。

3. 构造和析构基本工具:construct() 和 destroy()

上述construct()接受一个指针p和一个初值value,该函数的用途就是将初值设定到指针所指的空间上。C++的placement new 运算子可用来完成这一任务。

destroy()有两个版本,第一版本接受一个指针,准备将该指针所指之物析构掉。这很简单,直接调用该对象的析构函数即可。第二版本接受first和last两个迭代器,准备将[ first, last )范围内的所有对象析构掉(注意,这是一个左闭右开的范围)。如果范围很大,而每个对象的析构函数都无关痛痒(所谓trivial destructor),那么一次次调用这些无关痛痒的析构函数,对效率是一种伤害。因此,这里首先利用value_type()获得迭代器所指对象的型别,再利用__type_traits<T>判断该型别的析构函数是否无关痛痒。若是(__true_type),则什么也不做就结束;若否(__false_type),这才以循环方式巡防整个范围,并在循环中每经历一个对象就调用第一个版本的destroy()。 (上述value_type()和__type_traits<>在《STL源码剖析》3.7节有详细介绍。)

4. 空间的配置和释放,std::alloc

对象构造前的空间配置和对象析构后的空间释放,由<stl_alloc.h>负责,SGI对此的设计哲学如下:  

  (1)向system heap 要求空间;  

  (2)考虑多线程(multi-threads)状态;  

  (3)考虑内存不足时的应变措施;  

  (4)考虑过多“小型区块”可能造成的内存碎片(fragment)问题。

C++的内存配置基本操作是::operator new(),内存释放基本操作是::operator delete()。这两个全局函数相当于C的malloc() 和 free() 函数。SGI正是以malloc()和free() 完成内存的配置和释放。考虑到小型区块所可能造成的内存破碎问题,SGI 设计了双层级配置器,第一级配置器直接使用malloc() 和 free() ,第二级配置器则是情况采用不同的策略:以配置128bytes区块为界,大于则调用第一级配置器,小于则采用复杂的memory pool整理方式,同时也取决是否定义了_USE_MALLOC。

复制代码
#ifdef _USE_MALLOC
...
typedef __malloc_alloc_template<0> malloc_alloc;
typedef malloc_alloc alloc;           // 令alloc为第一级配置器
#else
...
// 令alloc为第二级配置器
typedef __default_alloc_template<__NODE_ALLOCATOR_THREADS, 0> alloc;
#endif     /* ! _USE_MALLOC*/
复制代码

其中__malloc_alloc_template就是第一级配置器,__default_alloc_template就是第二级配置器。注意:alloc并不接受任何template参数。

无论alloc被定义为第一级配置器或第二级配置器(SGI STL容器缺省使用第二级配置器),SGI还为它再包装一个接口如下,使配置器的接口能够符合STL规格:

复制代码
// 其内部的四个成员函数其实都是单纯的转调用,调用传递给配置器的成员函数
template<class T, class Alloc>
class simple_alloc {
public:static T *allocate(size_t n){ return 0 == n ? 0 : (T*)Alloc::allocate(n * sizeof(T)); }static T *allocate(void){ return (T*)Alloc::allocate(n * sizeof(T)); }static T *deallocate(T *p, size_t n){ if( 0 != n) ? 0 : (T*)Alloc::deallocate(p, n * sizeof(T)); }static T *allocate(size_t n){ Alloc::deallocate(p, sizeof(T)); }};
复制代码

SGI STL容器全都使用这个simple_alloc接口:

复制代码
template <class T, class Alloc = alloc>      // 缺省使用alloc为配置器
class vector{
protected:// 专属之空间配置器,每次配置一个元素大小typedef simple_alloc<value_type, Alloc> data_allocator;void deallocte() {if ( ... )data_allocator::deallocate(start, end_of_storage - start);}...
};
复制代码

5. 第一级配置器 __malloc_alloc_template 剖析 第一级配置器以malloc(), free(), realloc() 等C函数执行实际的内存配置、释放、重配置操作,并实现出类型C++ new-handler的机制。是的,它不能直接运用C++ new-handler机制,因为它并非使用::operator new来配置内存。注意,它没有“template型别参数”。参见相关源码。

6. 第二级配置器 __default_alloc_template剖析 第二级配置器多了一些机制,避免太多小额区块造成内存的碎片和配置时的额外负担。SGI第二级配置器的做法是:如果区块够大,超过128bytes时,就移交第一级配置器处理。当区块小于128bytes时,则以内存池(memory pool)管理,此法又称为次层配置(sub-allocation):每次配置一大块内存,并维护对应之自由链表(free-list)。下次若再有相同大小的内存需求,就直接从free-list中拨出。如果客户端释还小额区块,就由配置器回收到free-list中——是的,别忘了,配置器除了负责配置,也负责回收。为了管理方便,SGI第二级配置器会主动将任何小额区块的内存需求量上调至8的倍数(例如客户端要求30bytes,就自动调整为32bytes),并维护16个free-list,各自管理大小分别为8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 96, 104, 112, 120, 128bytes的小额区块。free-list的节点结构如下:

复制代码
// 使用union类型,不会为了维护链表所必须的指针而造成内存的另一种浪费
union obj
{union obj * free_list_link;char client_data[1];        // the client sees this
};
复制代码

参见相关源码。

7. 空间配置函数allocate()

8. 空间释放函数 deallocate()

9. 重新填充free lists 当发现free-list中没有可用区块了时,就调用refill(),准备为free list重新填充空间。新的空间将取自内存池(经由chunk_alloc完成)。缺省取得20个新节点(新区块),但万一内存池空间不足,获得的节点数(区块数)可能小于20。参见相关源码。

10. 内存池(memory pool) 从内存池中取空间给free list 使用,是chunk_alloc() 的工作。参见相关源码。 chunk_alloc()函数以end_free - start_free来判断内存池的水量。如果水量充足,就直接调出20个区块返回给free list。如果水量不足以提供20个区块,但还足够供应一个以上的区块,就拨出这不足20个区块的空间出去。这时候其pass by reference 的nobjs 参数将被修改为实际能够供应的区块数。如果内存池连一个区块空间都无法供应,对客户端显然无法交待,此时便需利用malloc()从heap中配置内存,为内存池注入源头活水以应付需求。新水量的大小为需求量的两倍,再加上一个随着配置次数增加而愈来愈大的附加量。

万一,整个system heap空间都不够了(以至于无法为内存池注入源头活水),malloc() 行动失败,chunk_alloc() 就四处寻找有无“尚有未用区块,且区块够大”之free list。找到了就挖一块交出,找不到就调用第一级配置器。第一级配置器其实也是使用malloc()来配置内存,但它有out-of-memory处理机制(类似new-handler机制),或许有机会释放其他的内存拿来此处用。如果可以,就成功,否则发出bad-alloc异常。

三、内存基本处理工具
STL 定义有五个全局函数,作用于未初始化空间上。这样的功能对于容器的实现很有帮助,在《STL源码剖析》第4章容器实现代码中,看到它们肩负的重任。前两个函数是前面说过的、用于构造的construct() 和用于析构的 destory() ,另三个函数是 uninitialized_copy(), uninitialized_fill(), uninitializd_fill_n(),分别对应于高层次函数copy(), fill(), fill_n()——这些都是STL算法,在第6章介绍。如果要使用本节的三个低层次函数,应该包含<memory>,不过SGI 把它们实际定义于<stl_uninitialized>。

1. uninitialized_copy

template <class InputIterator, class ForwardIterator>
ForwardIterator
uninitialized_copy( InpuIterator first, InpuIterator last, ForwardIterator result);

uninitialized_copy() 使我们能够将内存的配置与对象的构造行为分离开来。如果作为输出目的地的[ result, result + (last - first))范围内的每一个迭代器都指向未初始化区域,则uninitialized_copy() 会使用copy constructor,给身为输入来源之[first, last) 范围内的每一个对象产生一份复制品,放进输出范围中。(使用上面的construct 构造工具)。也就是说,针对输入范围内的每一个迭代器i,该函数会调用 construct( &*(result+(i-first)), *i ), 产生 *i 的复制品,放置于输出范围的相对位置上。

这是一个非常有用的工具,因为容器的全区间构造函数通常以两个步骤完成:

 (1)配置内存区块,足以包含范围内的所有元素。
 (2)使用uninitialized_copy() ,在该内存区块上构造元素。

2. uninitialized_fill

template <class FrowardIterator, class T>
void uninitialized_fill(FrowardIterator first, FrowardIterator last, const T& x);

uninitialized_fill() 也能够使我们将内存配置与对象的构造行为分离开来。如果[ first, last ) 范围内的每个迭代器都指向未初始化的内存,那么uninitialized_fill() 会在该范围内产生x(上式第三参数)的复制品。

注意:与uninitialized_copy() 一样,uninitialized_fill() 必须具备 “commit or rollback”语意,换句话说,它要么产生出所有必要元素,要么不产生任何元素(异常安全等级)。如果有任何一个copy constructor 丢出异常,uninitialized_fill 必须能够将已产生的所有元素析构掉。

3. uninitialized_fill_n

template <class ForwardIterator, class Size, class T>
ForwardIterator
uninitialized_fill_n(ForwardIterator first, Size n, const T& x);

uninitialized_fill_n() 能够使我们将内存配置与对象构造行为分离开来。它会为指定范围内的所有元素设定相同的初值。

如果[ first, first+n )范围内的每一个迭代器都指向未初始化的内存,那么 uninitialized_fill_n() 会调用copy constructor ,在该范围内产生x(上式第三参数)的复制品。uninitialized_fill_n() 也具有 “commit or rollback”语意。

这三个函数的实现法参见相关源码。其中所呈现的 iterators(迭代器)、value_type()、 __type_traits、__true_type、__false_type、is_POD_type等实现技术,在《STL源码剖析》都有详细介绍。

这篇关于STL——空间配置器(SGI-STL)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/483237

相关文章

SpringBoot中HTTP连接池的配置与优化

《SpringBoot中HTTP连接池的配置与优化》这篇文章主要为大家详细介绍了SpringBoot中HTTP连接池的配置与优化的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录一、HTTP连接池的核心价值二、Spring Boot集成方案方案1:Apache HttpCl

Maven 插件配置分层架构深度解析

《Maven插件配置分层架构深度解析》:本文主要介绍Maven插件配置分层架构深度解析,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Maven 插件配置分层架构深度解析引言:当构建逻辑遇上复杂配置第一章 Maven插件配置的三重境界1.1 插件配置的拓扑

Spring Boot集成Logback终极指南之从基础到高级配置实战指南

《SpringBoot集成Logback终极指南之从基础到高级配置实战指南》Logback是一个可靠、通用且快速的Java日志框架,作为Log4j的继承者,由Log4j创始人设计,:本文主要介绍... 目录一、Logback简介与Spring Boot集成基础1.1 Logback是什么?1.2 Sprin

VSCode中配置node.js的实现示例

《VSCode中配置node.js的实现示例》本文主要介绍了VSCode中配置node.js的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 目录一.node.js下载安装教程二.配置npm三.配置环境变量四.VSCode配置五.心得一.no

Gradle在国内配置镜像加速的实现步骤

《Gradle在国内配置镜像加速的实现步骤》在国内使用Gradle构建项目时,最大的痛点就是依赖下载贼慢,甚至卡死,下面教你如何配置国内镜像加速Gradle下载依赖,主要是通过改写repositori... 目录引言一、修改 build.gradle 或 settings.gradle 的 reposito

使用easy connect之后,maven无法使用,原来需要配置-Djava.net.preferIPv4Stack=true问题

《使用easyconnect之后,maven无法使用,原来需要配置-Djava.net.preferIPv4Stack=true问题》:本文主要介绍使用easyconnect之后,maven无法... 目录使用easGWowCy connect之后,maven无法使用,原来需要配置-DJava.net.pr

史上最全nginx详细参数配置

《史上最全nginx详细参数配置》Nginx是一个轻量级高性能的HTTP和反向代理服务器,同时也是一个通用代理服务器(TCP/UDP/IMAP/POP3/SMTP),最初由俄罗斯人IgorSyso... 目录基本命令默认配置搭建站点根据文件类型设置过期时间禁止文件缓存防盗链静态文件压缩指定定错误页面跨域问题

nginx负载均衡及详细配置方法

《nginx负载均衡及详细配置方法》Nginx作为一种高效的Web服务器和反向代理服务器,广泛应用于网站的负载均衡中,:本文主要介绍nginx负载均衡及详细配置,需要的朋友可以参考下... 目录一、 nginx负载均衡策略1.1 基本负载均衡策略1.2 第三方策略1.3 策略对比二、 nginx配置2.1

Android开发环境配置避坑指南

《Android开发环境配置避坑指南》本文主要介绍了Android开发环境配置过程中遇到的问题及解决方案,包括VPN注意事项、工具版本统一、Gerrit邮箱配置、Git拉取和提交代码、MergevsR... 目录网络环境:VPN 注意事项工具版本统一:android Studio & JDKGerrit的邮

SpringBoot3.4配置校验新特性的用法详解

《SpringBoot3.4配置校验新特性的用法详解》SpringBoot3.4对配置校验支持进行了全面升级,这篇文章为大家详细介绍了一下它们的具体使用,文中的示例代码讲解详细,感兴趣的小伙伴可以参考... 目录基本用法示例定义配置类配置 application.yml注入使用嵌套对象与集合元素深度校验开发