【每日一题】最小体力消耗路径

2023-12-11 22:37

本文主要是介绍【每日一题】最小体力消耗路径,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • Tag
  • 题目来源
  • 解题思路
    • 方法一:二分枚举答案
  • 写在最后

Tag

【二分枚举答案】【图】【2023-12-11】


题目来源

1631. 最小体力消耗路径


解题思路

拿到这个题目,计算从左上角到右下角的最小体力消耗值,有点像 64. 最小路径和。在 64 题中,需要计算出从左上角到右下角的最小路径和,每次行走只能向下或者向右走一格。而在本题中,行走有四个方向。

动态规划行不行?

因为 64 题中「向下或者向右走一格」,所以从左上角到达每个格子的最小路径和(以下简称为状态)只会和左边或者上边的状态有关,而左边和上边格子的状态在计算当前格子的状态是就已经计算完毕了。有了这样的递推关系就可以使用动态规划来解题。

但是在本题中上下左右四个方向都是可以行走的,那么使用动态规划的方法行不行,不行。比如示例 3,根据动态规划思想,从左上角到达最后一行第二列的 1 的最小体力消耗(以下简称为状态)可以从左侧的 1 以及上面的 2 转移得到,更新最后一行第二列的 1 处的状态为较大值为 1。这明显和答案不符。

感觉 DP 修改一下是可以的,但是还能想到如何修改,欢迎大家评论区讨论。

正确思路

看到题目中出现 「最小的最大值」字眼,一般可以使用「二分枚举答案」的方法。

看到题目中有「四个方向」或者「八个方向」的关键字,这就是在考察图。二维数组中的每一个整数可以当做一个节点,相邻两个整数直接的差值就是相邻节点之间的权值。

接下来就利用二分枚举答案的方法来解决本题。

方法一:二分枚举答案

思路

首先,我们可以将这个问题转化成一个「判定性」问题,即:是否存在一条从左上角到右下角的路径,其经过的所有边权的最大值不超过 x ?这个判定性问题解决起来并不复杂,我们只要从左上角开始进行深度优先搜索或者广度优先搜索,在搜索的过程中只允许经过边权不超过 x 的边,搜索结束后判断是否能到达右下角即可。(以上内容部分参考 力扣官方题解)

随着 x 的增大,原先可以经过的边现在依然可以经过。因此如果 x = x0 时,我们可以从左上角到达右下角,那么当 x > x0 时也同样可以到达右下角。于是我们可以使用二分枚举答案的方法来解决。

由于格子的高度范围为 [ 1 , 1 0 6 ] [1, 10^6] [1,106],因此我们可以在 [ 0 , 1 0 6 − 1 ] [0, 10^6-1] [0,1061] 的范围上对 x 进行二分枚举答案。在每一次枚举中使用深度优先搜索或者广度优先搜索来判断是否可以从左上角到达右下角,并根据判定结果更新二分查找的左边界和右边界。

我们选择广度优先搜索的方法来判断,具体实现见代码。

算法

class Solution {
public:int minimumEffortPath(vector<vector<int>>& heights) {const int dirs[4][2] = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};int m = heights.size(), n = heights[0].size();int left = 0, right = 999999, res = 0;while (left <= right) {int mid = left + ((right - left) >> 1);queue<pair<int, int>> q;q.emplace(0, 0);vector<int> seen(m*n);seen[0] = 1;while (!q.empty()) {auto [x, y] = q.front();q.pop();for (int i = 0; i < 4; ++i) {int nx = dirs[i][0] + x;int ny = dirs[i][1] + y;if (nx >= 0 && nx < m && ny >= 0 && ny < n && !seen[nx * n + ny] && abs(heights[x][y] - heights[nx][ny]) <= mid) {q.emplace(nx, ny);seen[nx*n + ny] = 1;}}}if (seen[m*n - 1]) {    // 判断是否可以到达右下角res = mid;right = mid - 1;}else {left = mid + 1;}}return res;}
};

复杂度分析

时间复杂度: O ( m n l o g C ) O(mnlogC) O(mnlogC) m m m n n n 分别是地图的行数和列数, C C C 是格子的最大高度。

空间复杂度: O ( m n ) O(mn) O(mn),为广搜中占用的空间。


写在最后

如果您发现文章有任何错误或者对文章有任何疑问,欢迎私信博主或者在评论区指出 💬💬💬。

如果大家有更优的时间、空间复杂度的方法,欢迎评论区交流。

最后,感谢您的阅读,如果有所收获的话可以给我点一个 👍 哦。

这篇关于【每日一题】最小体力消耗路径的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/482344

相关文章

SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志

《SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志》在SpringBoot项目中,使用logback-spring.xml配置屏蔽特定路径的日志有两种常用方式,文中的... 目录方案一:基础配置(直接关闭目标路径日志)方案二:结合 Spring Profile 按环境屏蔽关

VSCode设置python SDK路径的实现步骤

《VSCode设置pythonSDK路径的实现步骤》本文主要介绍了VSCode设置pythonSDK路径的实现步骤,包括命令面板切换、settings.json配置、环境变量及虚拟环境处理,具有一定... 目录一、通过命令面板快速切换(推荐方法)二、通过 settings.json 配置(项目级/全局)三、

使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)

《使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)》字体设计和矢量图形处理是编程中一个有趣且实用的领域,通过Python的matplotlib库,我们可以轻松将字体轮廓... 目录背景知识字体轮廓的表示实现步骤1. 安装依赖库2. 准备数据3. 解析路径指令4. 绘制图形关键

如何更改pycharm缓存路径和虚拟内存分页文件位置(c盘爆红)

《如何更改pycharm缓存路径和虚拟内存分页文件位置(c盘爆红)》:本文主要介绍如何更改pycharm缓存路径和虚拟内存分页文件位置(c盘爆红)问题,具有很好的参考价值,希望对大家有所帮助,如有... 目录先在你打算存放的地方建四个文件夹更改这四个路径就可以修改默认虚拟内存分页js文件的位置接下来从高级-

一文详解如何查看本地MySQL的安装路径

《一文详解如何查看本地MySQL的安装路径》本地安装MySQL对于初学者或者开发人员来说是一项基础技能,但在安装过程中可能会遇到各种问题,:本文主要介绍如何查看本地MySQL安装路径的相关资料,需... 目录1. 如何查看本地mysql的安装路径1.1. 方法1:通过查询本地服务1.2. 方法2:通过MyS

Python如何调用指定路径的模块

《Python如何调用指定路径的模块》要在Python中调用指定路径的模块,可以使用sys.path.append,importlib.util.spec_from_file_location和exe... 目录一、sys.path.append() 方法1. 方法简介2. 使用示例3. 注意事项二、imp

使用Python实现矢量路径的压缩、解压与可视化

《使用Python实现矢量路径的压缩、解压与可视化》在图形设计和Web开发中,矢量路径数据的高效存储与传输至关重要,本文将通过一个Python示例,展示如何将复杂的矢量路径命令序列压缩为JSON格式,... 目录引言核心功能概述1. 路径命令解析2. 路径数据压缩3. 路径数据解压4. 可视化代码实现详解1

Linux修改pip和conda缓存路径的几种方法

《Linux修改pip和conda缓存路径的几种方法》在Python生态中,pip和conda是两种常见的软件包管理工具,它们在安装、更新和卸载软件包时都会使用缓存来提高效率,适当地修改它们的缓存路径... 目录一、pip 和 conda 的缓存机制1. pip 的缓存机制默认缓存路径2. conda 的缓

Windows系统下如何查找JDK的安装路径

《Windows系统下如何查找JDK的安装路径》:本文主要介绍Windows系统下如何查找JDK的安装路径,文中介绍了三种方法,分别是通过命令行检查、使用verbose选项查找jre目录、以及查看... 目录一、确认是否安装了JDK二、查找路径三、另外一种方式如果很久之前安装了JDK,或者在别人的电脑上,想

Python中Windows和macOS文件路径格式不一致的解决方法

《Python中Windows和macOS文件路径格式不一致的解决方法》在Python中,Windows和macOS的文件路径字符串格式不一致主要体现在路径分隔符上,这种差异可能导致跨平台代码在处理文... 目录方法 1:使用 os.path 模块方法 2:使用 pathlib 模块(推荐)方法 3:统一使