【莫凡PyTorch教程笔记】-2. 建造第一个神经网络

2023-12-11 20:10

本文主要是介绍【莫凡PyTorch教程笔记】-2. 建造第一个神经网络,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

关系拟合 (回归)

这次会来见证神经网络是如何通过简单的形式将一群数据用一条线条来表示. 或者说, 是如何在数据当中找到他们的关系, 然后用神经网络模型来建立一个可以代表他们关系的线条.
在这里插入图片描述

建立数据集

我们创建一些假数据来模拟真实的情况. 比如一个一元二次函数: y = a * x^2 + b, 我们给 y 数据加上一点噪声来更加真实的展示它.

x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1)  # x data (tensor), shape=(100, 1)
""" 
这里的unsqueeze(tensor,1)将一维tensor分解为
tensor([[ 1],[ 2],[ 3],[ 4]])
"""
y = x.pow(2) + 0.2*torch.rand(x.size())                 # noisy y data (tensor), shape=(100, 1)

在这里插入图片描述

建立神经网络

建立一个神经网络我们可以直接运用 torch 中的体系. 先定义所有的层属性(init()), 然后再一层层搭建(forward(x))层于层的关系链接. 建立关系的时候, 我们会用到激励函数

import torch.nn.functional as F     # 激励函数都在这
class Net(torch.nn.Module):  # 继承 torch 的 Moduledef __init__(self, n_feature, n_hidden, n_output):super(Net, self).__init__()     # 继承 __init__ 功能# 定义每层用什么样的形式self.hidden = torch.nn.Linear(n_feature, n_hidden)   # 隐藏层线性输出self.predict = torch.nn.Linear(n_hidden, n_output)   # 输出层线性输出def forward(self, x):   # 这同时也是 Module 中的 forward 功能# 正向传播输入值, 神经网络分析出输出值x = F.relu(self.hidden(x))      # 激励函数(隐藏层的线性值)x = self.predict(x)             # 输出值return xnet = Net(n_feature=1, n_hidden=10, n_output=1)print(net)  # net 的结构
"""
Net((hidden): Linear(in_features=1, out_features=10, bias=True)(predict): Linear(in_features=10, out_features=1, bias=True)
)
"""

训练网络

训练的步骤很简单, 如下:

# optimizer 是训练的工具
optimizer = torch.optim.SGD(net.parameters(), lr=0.2)  # 传入 net 的所有参数, 学习率 这里使用常见的SGD
loss_func = torch.nn.MSELoss()      # 预测值和真实值的误差计算公式 (均方差)# 迭代更新100轮参数
for t in range(100):prediction = net(x)     # 喂给 net 训练数据 x, 输出预测值loss = loss_func(prediction, y)     # 计算两者的误差# 下面这三步基本是标配optimizer.zero_grad()   # 清空上一步的残余更新参数值loss.backward()         # 误差反向传播, 计算参数更新值optimizer.step()        # 将参数更新值施加到 net 的 parameters 上

下面是可视化结果
在这里插入图片描述

区分类型 (分类)

建立数据集

我们创建一些假数据来模拟真实的情况. 比如两个二次分布的数据, 不过他们的均值都不一样.

import torch
import matplotlib.pyplot as plt# 假数据
n_data = torch.ones(100, 2)         # 数据的基本形态  ones会创建100行2列的矩阵 元素全是1
x0 = torch.normal(2*n_data, 1)      # 类型0 x data (tensor), shape=(100, 2) normal(mean, std)返回均值是mean,标准差是std的正太分布
y0 = torch.zeros(100)               # 类型0 y data (tensor), shape=(1, 100) zeros(100) 返回包含100个0的列表
x1 = torch.normal(-2*n_data, 1)     # 类型1 x data (tensor), shape=(100, 2)
y1 = torch.ones(100)                # 类型1 y data (tensor), shape=(1, 100) ones(100) 返回包含100个1的列表# print('x0', x1)  # (100,2)# 注意 x, y 数据的数据形式是一定要像下面一样 (torch.cat 是在合并数据)
x = torch.cat((x0, x1), 0).type(torch.FloatTensor)  # cat用于合并两个size相同的tensor 0表示横着合并
y = torch.cat((y0, y1), ).type(torch.LongTensor)    # cat的维度默认是0 横着拼

在这里插入图片描述

建立神经网络

建立一个神经网络我们可以直接运用 torch 中的体系. 先定义所有的层属性(_init_()), 然后再一层层搭建(forward(x))层于层的关系链接. 这个和我们在前面 regression 的时候的神经网络基本没差. 建立关系的时候, 我们会用到激励函数

import torch
import torch.nn.functional as F     # 激励函数都在这class Net(torch.nn.Module):     # 继承 torch 的 Moduledef __init__(self, n_feature, n_hidden, n_output):super(Net, self).__init__()     # 继承 __init__ 功能self.hidden = torch.nn.Linear(n_feature, n_hidden)   # 隐藏层线性输出self.out = torch.nn.Linear(n_hidden, n_output)       # 输出层线性输出def forward(self, x):# 正向传播输入值, 神经网络分析出输出值x = F.relu(self.hidden(x))      # 激励函数(隐藏层的线性值)x = self.out(x)                 # 输出值, 但是这个不是预测值, 预测值还需要再另外计算return xnet = Net(n_feature=2, n_hidden=10, n_output=2) # 几个类别就几个 outputprint(net)  # net 的结构
"""
Net((hidden): Linear(in_features=2, out_features=10, bias=True)(out): Linear(in_features=10, out_features=2, bias=True)
)
"""

训练网络

训练的步骤很简单, 如下:

# optimizer 是训练的工具
optimizer = torch.optim.SGD(net.parameters(), lr=0.02)  # 传入 net 的所有参数, 学习率
# 算误差的时候, 注意真实值!不是! one-hot 形式的, 而是1D Tensor, (batch,)
# 但是预测值是2D tensor (batch, n_classes)
loss_func = torch.nn.CrossEntropyLoss()for t in range(100):out = net(x)     # 喂给 net 训练数据 x, 输出分析值loss = loss_func(out, y)     # 计算两者的误差optimizer.zero_grad()   # 清空上一步的残余更新参数值loss.backward()         # 误差反向传播, 计算参数更新值optimizer.step()        # 将参数更新值施加到 net 的 parameters 上

快速搭建法

我们先看看之前写神经网络时用到的步骤. 我们用 net1 代表这种方式搭建的神经网络.

class Net(torch.nn.Module):def __init__(self, n_feature, n_hidden, n_output):super(Net, self).__init__()self.hidden = torch.nn.Linear(n_feature, n_hidden)self.predict = torch.nn.Linear(n_hidden, n_output)def forward(self, x):x = F.relu(self.hidden(x))x = self.predict(x)return xnet1 = Net(1, 10, 1)   # 这是我们用这种方式搭建的 net1

我们用 class 继承了一个 torch 中的神经网络结构, 然后对其进行了修改, 不过还有更快的一招, 用一句话就概括了上面所有的内容!

net2 = torch.nn.Sequential(torch.nn.Linear(1, 10),torch.nn.ReLU(),torch.nn.Linear(10, 1)
)

我们再对比一下两者的结构:

print(net1)
"""
Net ((hidden): Linear (1 -> 10)(predict): Linear (10 -> 1)
)
"""
print(net2)
"""
Sequential ((0): Linear (1 -> 10)(1): ReLU ()(2): Linear (10 -> 1)
)
"""

我们会发现 net2 多显示了一些内容, 这是为什么呢? 原来他把激励函数也一同纳入进去了, 但是 net1 中, 激励函数实际上是在 forward() 功能中才被调用的. 这也就说明了, 相比 net2, net1 的好处就是, 你可以根据你的个人需要更加个性化你自己的前向传播过程, 比如(RNN). 不过如果你不需要七七八八的过程, 相信 net2 这种形式更适合你.

保存提取

训练好了一个模型, 我们当然想要保存它, 留到下次要用的时候直接提取直接用, 这就是这节的内容啦. 我们用回归的神经网络举例实现保存提取.

保存

我们快速地建造数据, 搭建网络:

torch.manual_seed(1)    # reproducible# 假数据
x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1)  # x data (tensor), shape=(100, 1)
y = x.pow(2) + 0.2*torch.rand(x.size())  # noisy y data (tensor), shape=(100, 1)def save():# 建网络net1 = torch.nn.Sequential(torch.nn.Linear(1, 10),torch.nn.ReLU(),torch.nn.Linear(10, 1))optimizer = torch.optim.SGD(net1.parameters(), lr=0.5)loss_func = torch.nn.MSELoss()# 训练for t in range(100):prediction = net1(x)loss = loss_func(prediction, y)optimizer.zero_grad()loss.backward()optimizer.step()

接下来我们有两种途径来保存

	torch.save(net1, 'net.pkl')  # 保存整个网络torch.save(net1.state_dict(), 'net_params.pkl')   # 只保存网络中的参数 (速度快, 占内存少)

提取网络

这种方式将会提取整个神经网络, 网络大的时候可能会比较慢.

def restore_net():# restore entire net1 to net2net2 = torch.load('net.pkl')prediction = net2(x)

只提取网络参数

这种方式将会提取所有的参数, 然后再放到你的新建网络中.

def restore_params():# 新建 net3net3 = torch.nn.Sequential(torch.nn.Linear(1, 10),torch.nn.ReLU(),torch.nn.Linear(10, 1))# 将保存的参数复制到 net3net3.load_state_dict(torch.load('net_params.pkl'))prediction = net3(x)

批训练

Torch 中提供了一种帮你整理你的数据结构的好东西, 叫做 DataLoader, 我们能用它来包装自己的数据, 进行批训练. 而且批训练可以有很多种途径,

DataLoader

DataLoadertorch 给你用来包装你的数据的工具. 所以你要讲自己的 (numpy array 或其他) 数据形式装换成 Tensor, 然后再放进这个包装器中. 使用 DataLoader 有什么好处呢? 就是他们帮你有效地迭代数据, 举例:

import torch
import torch.utils.data as Data
torch.manual_seed(1)    # reproducibleBATCH_SIZE = 5      # 批训练的数据个数x = torch.linspace(1, 10, 10)       # x data (torch tensor)
y = torch.linspace(10, 1, 10)       # y data (torch tensor)# 先转换成 torch 能识别的 Dataset
torch_dataset = Data.TensorDataset(x, y)  # 把 dataset 放入 DataLoader
loader = Data.DataLoader(dataset=torch_dataset,      # torch TensorDataset formatbatch_size=BATCH_SIZE,      # mini batch sizeshuffle=True,               # 要不要打乱数据 (打乱比较好)num_workers=2,              # 多线程来读数据
)for epoch in range(3):   # 训练所有!整套!数据 3 次for step, (batch_x, batch_y) in enumerate(loader):  # 每一步 loader 释放一小批数据用来学习 step表示可以取几次的batch# 假设这里就是你训练的地方...# 打出来一些数据print('Epoch: ', epoch, '| Step: ', step, '| batch x: ',batch_x.numpy(), '| batch y: ', batch_y.numpy())"""
Epoch:  0 | Step:  0 | batch x:  [ 5.  7. 10.  3.  4.] | batch y:  [6. 4. 1. 8. 7.]
Epoch:  0 | Step:  1 | batch x:  [2. 1. 8. 9. 6.] | batch y:  [ 9. 10.  3.  2.  5.]
Epoch:  1 | Step:  0 | batch x:  [ 4.  6.  7. 10.  8.] | batch y:  [7. 5. 4. 1. 3.]
Epoch:  1 | Step:  1 | batch x:  [5. 3. 2. 1. 9.] | batch y:  [ 6.  8.  9. 10.  2.]
Epoch:  2 | Step:  0 | batch x:  [ 4.  2.  5.  6. 10.] | batch y:  [7. 9. 6. 5. 1.]
Epoch:  2 | Step:  1 | batch x:  [3. 9. 1. 8. 7.] | batch y:  [ 8.  2. 10.  3.  4.]
"""

可以看出, 每步都导出了5个数据进行学习. 然后每个 epoch 的导出数据都是先打乱了以后再导出.

优化器

这节内容主要是用 Torch 实践几种优化器

伪数据

为了对比各种优化器的效果, 我们需要有一些数据, 今天我们还是自己编一些伪数据, 这批数据是这样的:

import torch
import torch.utils.data as Data
import torch.nn.functional as F
import matplotlib.pyplot as plttorch.manual_seed(1)    # reproducibleLR = 0.01
BATCH_SIZE = 32
EPOCH = 12# fake dataset
x = torch.unsqueeze(torch.linspace(-1, 1, 1000), dim=1)
y = x.pow(2) + 0.1*torch.normal(torch.zeros(*x.size()))# plot dataset
plt.scatter(x.numpy(), y.numpy())
plt.show()# 使用上节内容提到的 data loader
torch_dataset = Data.TensorDataset(x, y)
loader = Data.DataLoader(dataset=torch_dataset, batch_size=BATCH_SIZE, shuffle=True, num_workers=2,)

在这里插入图片描述

每个优化器优化一个神经网络

为了对比每一种优化器, 我们给他们各自创建一个神经网络, 但这个神经网络都来自同一个 Net 形式.

# 默认的 network 形式
class Net(torch.nn.Module):def __init__(self):super(Net, self).__init__()self.hidden = torch.nn.Linear(1, 20)   # hidden layerself.predict = torch.nn.Linear(20, 1)   # output layerdef forward(self, x):x = F.relu(self.hidden(x))      # activation function for hidden layerx = self.predict(x)             # linear outputreturn x# 为每个优化器创建一个 net
net_SGD         = Net()
net_Momentum    = Net()
net_RMSprop     = Net()
net_Adam        = Net()
nets = [net_SGD, net_Momentum, net_RMSprop, net_Adam]

优化器 Optimizer

接下来创建不同的优化器, 用来训练不同的网络. 并创建一个 loss_func 用来计算误差. 我们用几种常见的优化器, SGD, Momentum, RMSprop, Adam.

# different optimizers
opt_SGD         = torch.optim.SGD(net_SGD.parameters(), lr=LR)
opt_Momentum    = torch.optim.SGD(net_Momentum.parameters(), lr=LR, momentum=0.8)
opt_RMSprop     = torch.optim.RMSprop(net_RMSprop.parameters(), lr=LR, alpha=0.9)
opt_Adam        = torch.optim.Adam(net_Adam.parameters(), lr=LR, betas=(0.9, 0.99))
optimizers = [opt_SGD, opt_Momentum, opt_RMSprop, opt_Adam]loss_func = torch.nn.MSELoss()
losses_his = [[], [], [], []]   # 记录 training 时不同神经网络的 loss

训练/出图

接下来训练和 loss 画图.

for epoch in range(EPOCH):print('Epoch: ', epoch)for step, (b_x, b_y) in enumerate(loader):# 对每个优化器, 优化属于他的神经网络for net, opt, l_his in zip(nets, optimizers, losses_his):output = net(b_x)              # get output for every netloss = loss_func(output, b_y)  # compute loss for every netopt.zero_grad()                # clear gradients for next trainloss.backward()                # backpropagation, compute gradientsopt.step()                     # apply gradientsl_his.append(loss.data.numpy())     # loss recoder

在这里插入图片描述
SGD 是最普通的优化器, 也可以说没有加速效果, 而 MomentumSGD 的改良版, 它加入了动量原则. 后面的 RMSprop 又是 Momentum 的升级版. 而 Adam 又是 RMSprop 的升级版. 不过从这个结果中我们看到, Adam 的效果似乎比 RMSprop 要差一点. 所以说并不是越先进的优化器, 结果越佳. 我们在自己的试验中可以尝试不同的优化器, 找到那个最适合你数据/网络的优化器.

这篇关于【莫凡PyTorch教程笔记】-2. 建造第一个神经网络的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/481970

相关文章

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

Java Web实现类似Excel表格锁定功能实战教程

《JavaWeb实现类似Excel表格锁定功能实战教程》本文将详细介绍通过创建特定div元素并利用CSS布局和JavaScript事件监听来实现类似Excel的锁定行和列效果的方法,感兴趣的朋友跟随... 目录1. 模拟Excel表格锁定功能2. 创建3个div元素实现表格锁定2.1 div元素布局设计2.

SpringBoot连接Redis集群教程

《SpringBoot连接Redis集群教程》:本文主要介绍SpringBoot连接Redis集群教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 依赖2. 修改配置文件3. 创建RedisClusterConfig4. 测试总结1. 依赖 <de

Nexus安装和启动的实现教程

《Nexus安装和启动的实现教程》:本文主要介绍Nexus安装和启动的实现教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、Nexus下载二、Nexus安装和启动三、关闭Nexus总结一、Nexus下载官方下载链接:DownloadWindows系统根

CnPlugin是PL/SQL Developer工具插件使用教程

《CnPlugin是PL/SQLDeveloper工具插件使用教程》:本文主要介绍CnPlugin是PL/SQLDeveloper工具插件使用教程,具有很好的参考价值,希望对大家有所帮助,如有错... 目录PL/SQL Developer工具插件使用安装拷贝文件配置总结PL/SQL Developer工具插

Java中的登录技术保姆级详细教程

《Java中的登录技术保姆级详细教程》:本文主要介绍Java中登录技术保姆级详细教程的相关资料,在Java中我们可以使用各种技术和框架来实现这些功能,文中通过代码介绍的非常详细,需要的朋友可以参考... 目录1.登录思路2.登录标记1.会话技术2.会话跟踪1.Cookie技术2.Session技术3.令牌技

Python使用Code2flow将代码转化为流程图的操作教程

《Python使用Code2flow将代码转化为流程图的操作教程》Code2flow是一款开源工具,能够将代码自动转换为流程图,该工具对于代码审查、调试和理解大型代码库非常有用,在这篇博客中,我们将深... 目录引言1nVflRA、为什么选择 Code2flow?2、安装 Code2flow3、基本功能演示

Pytorch介绍与安装过程

《Pytorch介绍与安装过程》PyTorch因其直观的设计、卓越的灵活性以及强大的动态计算图功能,迅速在学术界和工业界获得了广泛认可,成为当前深度学习研究和开发的主流工具之一,本文给大家介绍Pyto... 目录1、Pytorch介绍1.1、核心理念1.2、核心组件与功能1.3、适用场景与优势总结1.4、优

conda安装GPU版pytorch默认却是cpu版本

《conda安装GPU版pytorch默认却是cpu版本》本文主要介绍了遇到Conda安装PyTorchGPU版本却默认安装CPU的问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的... 目录一、问题描述二、网上解决方案罗列【此节为反面方案罗列!!!】三、发现的根本原因[独家]3.1 p

Java Spring 中的监听器Listener详解与实战教程

《JavaSpring中的监听器Listener详解与实战教程》Spring提供了多种监听器机制,可以用于监听应用生命周期、会话生命周期和请求处理过程中的事件,:本文主要介绍JavaSprin... 目录一、监听器的作用1.1 应用生命周期管理1.2 会话管理1.3 请求处理监控二、创建监听器2.1 Ser