强化学习莫凡python——一些补充

2023-12-11 20:10

本文主要是介绍强化学习莫凡python——一些补充,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. RL分类

在这里插入图片描述

  • model-free方法:对环境不了解,每次行动只能等环境的反馈才可以进行下一步
  • model-based方法:由于已经对环境有一定的了解,所以每次在执行行动的时候可以预先想象到之后环境的反馈,来更好指导自己的决策。
  • 对环境的了解主要体现在:环境的奖励、环境的一些状态转移概率,这些内容是否已知

在这里插入图片描述

  • 基于概率的方法输出的是每个动作的概率,这时每个动作都有可能被选到
  • 基于价值的方法输出的每个动作的价值,这时只会选到价值最大的动作

在这里插入图片描述

  • 对于动作空间是连续值的场景来说,基于价值的方法是无能为力的,但是基于概率的方式却可以使用一个概率分布区进行描述,来选择一个动作

在这里插入图片描述

  • 结合基于概率的方法和基于值的方法,可以得到一种更强大的方法:Actor-Critic
  • Actor使用概率来选择动作
  • Critic对actor做出的动作给出价值
  • 这样就在原有的Policy Gradients基础上加入了学习过程

在这里插入图片描述
在这里插入图片描述

  • 因为单步更新效率高,所以现在大多数方式都采用单步更新

在这里插入图片描述

  • 在线学习就是要自己一边学习一边和环境交互
  • 离线学习就是可以让别人学,然后自己可以找别的时间看着它学,不用一直自己边学边和环境交互。 决策过程学习优化决策的过程 是分开的

在这里插入图片描述
在这里插入图片描述

  • 假设Q-learning的机器人天生是机器人,
  • γ = 1 \gamma=1 γ=1的时候,就是给了它一副贼好的眼睛,所以它可以非常清晰看到所有未来步骤的奖赏
  • γ = 0 \gamma=0 γ=0的时候,就是眼睛度数不合适,所以看不见未来,只能看到刚刚走的那步的奖励
  • γ = [ 0 ∼ 1 ] \gamma=[0\sim1] γ=[01]时,就是上面的公式,越远的未来看的越不清楚,也就是未来的奖励衰减越来越大。

2. Q-learning

在这里插入图片描述
有一个实际值,有一个估计值(这点有点像监督学习),然后让估计/预测值不断靠近实际值,就可以得到一个很好的Q表。
然后再结合 ϵ \epsilon ϵ greed策略去选择动作(策略是指导选取动作的)

3. Sarsa

在这里插入图片描述
Q_learning和Sarsa都是model_free的方法

4. Sara-lambda

在这里插入图片描述

  • Sarsa就是Sarsa(0),是一种单步更新的方式,
  • Sarsa(1)属于回合更新,一次episode结束后,所有步都同等程度更新
  • Sarsa( λ \lambda λ)中的这个 λ \lambda λ参数和之前的 γ \gamma γ有点像
    • λ \lambda λ参数是更新程度的描述,越靠近终点(或者说要靠近奖励越大的地方),更新的幅度越大
    • γ \gamma γ则是当前动作的价值的衰减因子,越远则价值越小。

5. DQN

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

6.Actor-Critic

在这里插入图片描述

在这里插入图片描述

这篇关于强化学习莫凡python——一些补充的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/481966

相关文章

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

Python中win32包的安装及常见用途介绍

《Python中win32包的安装及常见用途介绍》在Windows环境下,PythonWin32模块通常随Python安装包一起安装,:本文主要介绍Python中win32包的安装及常见用途的相关... 目录前言主要组件安装方法常见用途1. 操作Windows注册表2. 操作Windows服务3. 窗口操作

Python中re模块结合正则表达式的实际应用案例

《Python中re模块结合正则表达式的实际应用案例》Python中的re模块是用于处理正则表达式的强大工具,正则表达式是一种用来匹配字符串的模式,它可以在文本中搜索和匹配特定的字符串模式,这篇文章主... 目录前言re模块常用函数一、查看文本中是否包含 A 或 B 字符串二、替换多个关键词为统一格式三、提

python常用的正则表达式及作用

《python常用的正则表达式及作用》正则表达式是处理字符串的强大工具,Python通过re模块提供正则表达式支持,本文给大家介绍python常用的正则表达式及作用详解,感兴趣的朋友跟随小编一起看看吧... 目录python常用正则表达式及作用基本匹配模式常用正则表达式示例常用量词边界匹配分组和捕获常用re

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

python删除xml中的w:ascii属性的步骤

《python删除xml中的w:ascii属性的步骤》使用xml.etree.ElementTree删除WordXML中w:ascii属性,需注册命名空间并定位rFonts元素,通过del操作删除属... 可以使用python的XML.etree.ElementTree模块通过以下步骤删除XML中的w:as

使用Python绘制3D堆叠条形图全解析

《使用Python绘制3D堆叠条形图全解析》在数据可视化的工具箱里,3D图表总能带来眼前一亮的效果,本文就来和大家聊聊如何使用Python实现绘制3D堆叠条形图,感兴趣的小伙伴可以了解下... 目录为什么选择 3D 堆叠条形图代码实现:从数据到 3D 世界的搭建核心代码逐行解析细节优化应用场景:3D 堆叠图

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

Python中Tensorflow无法调用GPU问题的解决方法

《Python中Tensorflow无法调用GPU问题的解决方法》文章详解如何解决TensorFlow在Windows无法识别GPU的问题,需降级至2.10版本,安装匹配CUDA11.2和cuDNN... 当用以下代码查看GPU数量时,gpuspython返回的是一个空列表,说明tensorflow没有找到

Python get()函数用法案例详解

《Pythonget()函数用法案例详解》在Python中,get()是字典(dict)类型的内置方法,用于安全地获取字典中指定键对应的值,它的核心作用是避免因访问不存在的键而引发KeyError错... 目录简介基本语法一、用法二、案例:安全访问未知键三、案例:配置参数默认值简介python是一种高级编