【莫凡Python】Tensorflow 基础构架

2023-12-11 20:10

本文主要是介绍【莫凡Python】Tensorflow 基础构架,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 处理结构

  • Tensorflow:
    首先要定义神经网络结构(数据流图 data flow graphs),再把数据 (数据以张量tensor形式存在) 放入结构中进行运算和训练。即tensor不断在一个节点flow到另一个节点。
  • Tensor (张量) :
    • 零阶张量=纯量=标量=scalar=一个数值,e.g. [1]
    • 一维张量=向量=vector, e.g. [1, 2, 3]
    • 二维张量=矩阵=matrix, e.g. [[1, 2, 3 ][ 4, 5, 6 ][7, 8, 9 ]]

2 例子2

目的:线性拟合 y=0.1x+0.3 , 每20步训练,输出w, b。

import tensorflow as tf
import numpy as np# create data
x_data = np.random.rand(100).astype(np.float32)
y_data = x_data * 0.1 + 0.3# create model
Weights = tf.Variable(tf.random_uniform([1], -1.0, 1.0))
biases = tf.Variable(tf.zeros([1]))
y = Weights * x_data + biases# cal loss
loss = tf.reduce_mean(tf.square(y-y_data))
optimizer = tf.train.GradientDescentOptimizer(0.5)
tain = optimizer.minimize(loss)# use model
init = tf.global_variable_initializer() #初始化之前定义的Variable
sess = tf.Session() #创建会话,用session执行init初始化步骤
sess.run(init)# train
for step in range(200):sess.run(train)if step % 20 == 0:print(step, sess.run(Weights), sess.run(biases))

3 Session 会话控制

功能:加载两个tensorflow,建立两个matrix,输出两个matrix相乘的结果。

import tensorflow as tf# create two matrixes
matrix1 = tf.constant([[3,3]])
matrix2 = tf.constant([[2],[2]])
product = tf.matmul(matrix1, matrix2)# method of open Session 
with tf.Session() as sess:result = sess.run(product)print(result) #[[12]]

4 Variable 变量

在Tensorflow中,变量必须定义是用tf.Variable说明。

import numpy as np
import matplotlib.pyplot as plt
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()v1 = tf.Variable(0,name='age') #定义变量,值为0,名字为age
c1 = tf.constant(1) #定义常量
v2 = tf.add(v1,c1)
update = tf.assign(v1,v2)# 若定义了Variable就一定要initialize
init = tf.global_variables_initializer()# 使用Session启动
with tf.Session() as sess:sess.run(init)for _ in range(3):sess.run(update)print(sess.run(v1))

5 Placeholder 传入值

placeholder是Tensorflow中的占位符,暂时存储变量。
Tensorflow如果想从外部传入data,需要用tf.placeholder(),然后以这种形式传输数据sess.run(**, feed_dict={input: **}).

import numpy as np
import matplotlib.pyplot as plt
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()# 定义两个碗
input1 = tf.placeholder(tf.float32)
input2 = tf.placeholder(tf.float32)output = tf.multiply(input1,input2)with tf.Session() as sess:print(sess.run(output,feed_dict={input1:[3.],input2:[8.]})) # [24.]

6 什么是激励函数 (Activation Function)

  • 线性函数 v.s. 非线性函数
    在这里插入图片描述
  • 激励函数
    在这里插入图片描述
  • 常用选择

在这里插入图片描述

7 激励函数 Activation Function

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt# fake data
x = np.linspace(-5, 5, 200)     # x data, shape=(100, 1)# following are popular activation functions
y_relu = tf.nn.relu(x)
y_sigmoid = tf.nn.sigmoid(x)
y_tanh = tf.nn.tanh(x)
y_softplus = tf.nn.softplus(x)
# y_softmax = tf.nn.softmax(x)  softmax is a special kind of activation function, it is about probabilitysess = tf.Session()
y_relu, y_sigmoid, y_tanh, y_softplus = sess.run([y_relu, y_sigmoid, y_tanh, y_softplus])# plt to visualize these activation function
plt.figure(1, figsize=(8, 6))
plt.subplot(221)
plt.plot(x, y_relu, c='red', label='relu')
plt.ylim((-1, 5))
plt.legend(loc='best')plt.subplot(222)
plt.plot(x, y_sigmoid, c='red', label='sigmoid')
plt.ylim((-0.2, 1.2))
plt.legend(loc='best')plt.subplot(223)
plt.plot(x, y_tanh, c='red', label='tanh')
plt.ylim((-1.2, 1.2))
plt.legend(loc='best')plt.subplot(224)
plt.plot(x, y_softplus, c='red', label='softplus')
plt.ylim((-0.2, 6))
plt.legend(loc='best')plt.show()

在这里插入图片描述

这篇关于【莫凡Python】Tensorflow 基础构架的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/481958

相关文章

Python中Json和其他类型相互转换的实现示例

《Python中Json和其他类型相互转换的实现示例》本文介绍了在Python中使用json模块实现json数据与dict、object之间的高效转换,包括loads(),load(),dumps()... 项目中经常会用到json格式转为object对象、dict字典格式等。在此做个记录,方便后续用到该方

从基础到高级详解Python数值格式化输出的完全指南

《从基础到高级详解Python数值格式化输出的完全指南》在数据分析、金融计算和科学报告领域,数值格式化是提升可读性和专业性的关键技术,本文将深入解析Python中数值格式化输出的相关方法,感兴趣的小伙... 目录引言:数值格式化的核心价值一、基础格式化方法1.1 三种核心格式化方式对比1.2 基础格式化示例

Python与MySQL实现数据库实时同步的详细步骤

《Python与MySQL实现数据库实时同步的详细步骤》在日常开发中,数据同步是一项常见的需求,本篇文章将使用Python和MySQL来实现数据库实时同步,我们将围绕数据变更捕获、数据处理和数据写入这... 目录前言摘要概述:数据同步方案1. 基本思路2. mysql Binlog 简介实现步骤与代码示例1

redis-sentinel基础概念及部署流程

《redis-sentinel基础概念及部署流程》RedisSentinel是Redis的高可用解决方案,通过监控主从节点、自动故障转移、通知机制及配置提供,实现集群故障恢复与服务持续可用,核心组件包... 目录一. 引言二. 核心功能三. 核心组件四. 故障转移流程五. 服务部署六. sentinel部署

Python ORM神器之SQLAlchemy基本使用完全指南

《PythonORM神器之SQLAlchemy基本使用完全指南》SQLAlchemy是Python主流ORM框架,通过对象化方式简化数据库操作,支持多数据库,提供引擎、会话、模型等核心组件,实现事务... 目录一、什么是SQLAlchemy?二、安装SQLAlchemy三、核心概念1. Engine(引擎)

Ubuntu如何升级Python版本

《Ubuntu如何升级Python版本》Ubuntu22.04Docker中,安装Python3.11后,使用update-alternatives设置为默认版本,最后用python3-V验证... 目China编程录问题描述前提环境解决方法总结问题描述Ubuntu22.04系统自带python3.10,想升级

Python自动化处理PDF文档的操作完整指南

《Python自动化处理PDF文档的操作完整指南》在办公自动化中,PDF文档处理是一项常见需求,本文将介绍如何使用Python实现PDF文档的自动化处理,感兴趣的小伙伴可以跟随小编一起学习一下... 目录使用pymupdf读写PDF文件基本概念安装pymupdf提取文本内容提取图像添加水印使用pdfplum

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

基于Python实现自动化邮件发送系统的完整指南

《基于Python实现自动化邮件发送系统的完整指南》在现代软件开发和自动化流程中,邮件通知是一个常见且实用的功能,无论是用于发送报告、告警信息还是用户提醒,通过Python实现自动化的邮件发送功能都能... 目录一、前言:二、项目概述三、配置文件 `.env` 解析四、代码结构解析1. 导入模块2. 加载环