SHiP: Signature-based Hit Predictor for High Performance Caching结合Sniper的实现

本文主要是介绍SHiP: Signature-based Hit Predictor for High Performance Caching结合Sniper的实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

SHiP: Signature-based Hit Predictor for High Performance Caching

1. 论文摘要
共享末级缓存(LLC)在提高应用程序性能和减少片外存储器的带宽要求方面扮演着很重要的角色。为了更加有效的使用LLC,最近的研究发现,通过改变在缓存插入和缓存命中时的数据的重引用间隔的预测能够显著的提高缓存的性能。因此如何最好的预测将要插入的数据的重引用行为将会是一个最基本的研究挑战。
本文通过研究发现,将缓存行的重引用行为与该缓存行对应的唯一的签名进行关联,缓存的性能能够得到很高的提升。我们调查研究了三种缓存行的签名信息的使用效果,包括使用内存区域,程序计数器和指令序列历史记录来获得签名。同时我们还提出了一种基于签名的命中预测器(SHiP)来学习属于每个签名对应的数据的重引用行为。总的来说,我们发现SHiP能够使得基础的LRU替换策略和最新的研究的缓存替换策略都有实质性的性能提升。平均而言,相对于LRU替换算法,SHiP能够提升顺序和多道程序大致10%和12%的性能。同时,SHiP与最近的提出的替换算法,例如Seg_LRU和SDBP,能够提高接近一倍的性能,并且只需要较少的硬件开销。
关键词:替换策略,重引用间隔预测,共享缓存

2. 算法介绍
算法目标:利用署名信息来预测cache中插入的数据在将会在未来的哪里被再次访问

存储开销:为了学习签名的重引用模式,算法需要为每个缓存行增加两个存储区域:署名存储区和用于跟踪缓存插入结果的单独一位。结果位在初始化时是零,只有当缓存行被重引用才会被置为1。同时还要维护一个SHCT表,大小为16K。

算法描述:首先使用一个饱和计数器组成的SHCT表来学习签名的重引用行为。当缓存行命中时,SHiP算法会增加SHCT表中该缓存行对应的签名的值。当一个缓存行要被替换出去并且在插入之后没有被重引用过,SHiP会较少SHCT中对应的值。SHCT表中的值代表着签名的重引用行为。如果值为0,则说明这个缓存行很有可能不会被使用。换句话说,与签名相关联的引用的重引用间隔很大。另一种情况,如果SHCT中计数器的值是正的,说明相应的签名很有可能被命中。由于SHCT值记录一个给定的签名是否被重引用而不是时间,所以SHCT无法得到准确的重引用间隔。SHiP的根本目的是为LLC的替换策略提供一个参考,算法可以提供对于每一个插入的缓存行给出一个重引用间隔。在算法执行过程中,如果发生cache缺失,通过要插入的缓存行的签名在SHCP表中找到相应的值,如果这个值为零则表示该要插入的缓存行的重引用间隔很大,否则就认为重引用间隔较小,将会被访问。利用这些信息,替换策略可以选择是否要替换该行。

3. 签名的选择和获取
每一个cache line都有自己的一个Signature,通过这个签名来索引SHCT表。根据Signature的来源不同,可以将其分为三类,在实验过程中将会比较这三种类型在性能上的差异。
第一类:SHiP-PC。基于程序计数器PC的Signature定义。主要含义是利用访存指令的地址作为SHCT的索引。通过hash函数将PC的值映射为14位的签名。
第二类:SHiP-ISeq。基于指令序列历史记录的signature定义。设定访存指令为1,其余为0,在流水线的译码阶段给出1/0,得到一定长度的01序列来作为指令序列的历史记录。对于每个cache line使用当前指令包括现在的14位长度的序列作为签名。
第三类:SHiP-Mem。基于访问的内存地址的signature定义。主要含义是指明内存每个地方的数据可能被重复引用间隔。地址的高14位作为signature。

4. SHCT的设计
SHCT设计为16K个表项,每个表项三位,作为饱和计数器。所以signature的位数为14位,用于索引SHCT。每个cache line需要增加两个区域,一个用于存储signature,需要14位;另一个占用1位用于存取outcome,表示是否被重新引用过。
这里写图片描述

5. SHCT的更新操作

if LLC命中 thencache_line.outcome = true;SHCT[signature_m]++;
elseif 被剔除缓存行的outcome!=trueSHCT[signature_m]--;cache_line.outcome = false;cache_line.signature_m = signature;if SHCT[signature] == 0该要被插入的缓存行被预测为 distant re-reference;else该要被插入的缓存行被预测为 intermediate re-reference;
end if

6. SHCT代码实现

extern int sig_choice;
class SHCT
{private:unsigned char table[16*1024];public:UInt64 PC;UInt64 maddr;UInt64 inst_hist;unsigned int signature;SHCT(){for(int i=0;i<16*1024;i++)table[i]=0;}unsigned int find_signature(unsigned int signature){if(signature<16*1024)return table[signature];elsereturn 0;}void increment_signature(unsigned int signature){if(signature<16*1024){table[signature]++;if(table[signature]>7)table[signature]=7;}}void decrement_signature(unsigned int signature){if(signature<16*1024&&table[signature]>0)table[signature]--;}void PC_to_signature(){srand(PC);signature=rand()%(16*1024);}void maddr_to_signature(){signature=(maddr>>30)%(16*1024);}void insthist_to_signature(){srand(inst_hist);signature=rand()%(16*1024);}unsigned int set_PC(UInt64 pc){PC=pc;PC_to_signature();return signature;}unsigned int set_maddr(UInt64 ma){maddr=ma;maddr_to_signature();return signature;}unsigned int set_hist(UInt64 hist){inst_hist=hist;insthist_to_signature();return signature;}
};
extern SHCT *shct;
//使用全局变量传递PC等参数
//三种signature需要的数据
extern UInt64 PC;
extern UInt64 inst_hist1;
extern UInt64 maddr;

7. SHCT的操作的实现
(1)cache hit时的shct表更新

m_cache_block_info_array[line_index]->set_reused(true);   
Shct->increment_signature(m_cache_block_info_array[line_index]->get_signature());

(2)cache miss时的shct表更新

if(!evict_block_info->get_reused())            shct->decrement_signature(evict_block_info->get_signature());
m_cache_block_info_array[index]->set_reused(false);            m_cache_block_info_array[index]->set_signature_choice(sig_choice);

8. SHCT与替换算法的结合
(1)SHCT+LRU

  • 根据将要插入的数据对应的signature,查找shct表,确定counter的值
  • 在cacheline中寻找对应的shct表中的值不大于counter的cacheline
  • 在找到的cacheline中使用lru替换算法
  • 如果找不到满足要求的cacheline,使用lru替换算法

(2)SHCT+SRRIP

  • 对于要插入的数据,srrip会将该数据插入到的cacheline对应的rrip_bits设置为0
  • shct_srrip对于要插入的数据,首先判断该数据的signature对应于shct表中的counter的值是否为0。如果为0,表示很长时间都不会重引用,则将rrip_bits设置为rrip_max-1;除此之外设置为0

9. 具体代码和实验数据
github 实验代码和数据链接

这篇关于SHiP: Signature-based Hit Predictor for High Performance Caching结合Sniper的实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/479806

相关文章

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

如何在 Spring Boot 中实现 FreeMarker 模板

《如何在SpringBoot中实现FreeMarker模板》FreeMarker是一种功能强大、轻量级的模板引擎,用于在Java应用中生成动态文本输出(如HTML、XML、邮件内容等),本文... 目录什么是 FreeMarker 模板?在 Spring Boot 中实现 FreeMarker 模板1. 环

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Spring Security自定义身份认证的实现方法

《SpringSecurity自定义身份认证的实现方法》:本文主要介绍SpringSecurity自定义身份认证的实现方法,下面对SpringSecurity的这三种自定义身份认证进行详细讲解,... 目录1.内存身份认证(1)创建配置类(2)验证内存身份认证2.JDBC身份认证(1)数据准备 (2)配置依

利用python实现对excel文件进行加密

《利用python实现对excel文件进行加密》由于文件内容的私密性,需要对Excel文件进行加密,保护文件以免给第三方看到,本文将以Python语言为例,和大家讲讲如何对Excel文件进行加密,感兴... 目录前言方法一:使用pywin32库(仅限Windows)方法二:使用msoffcrypto-too