【数值计算方法(黄明游)】函数插值与曲线拟合(二):三次 Hermite 插值【理论到程序】

本文主要是介绍【数值计算方法(黄明游)】函数插值与曲线拟合(二):三次 Hermite 插值【理论到程序】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


文章目录

  • 一、近似表达方式
    • 1. 插值(Interpolation)
    • 2. 拟合(Fitting)
    • 3. 投影(Projection)
  • 二、Lagrange插值
    • 1. 拉格朗日插值方法
    • 2. Lagrange插值公式
      • a. 线性插值(n=1)
      • b. 抛物插值(n=2)
  • 三、Newton插值
  • 四、三次 Hermite 插值
    • 1. 天书
    • 2. 人话
    • 3. 例题
    • 4. python实现

一、近似表达方式

  插值、拟合和投影都是常用的近似表达方式,用于对数据或函数进行估计、预测或表示。

1. 插值(Interpolation)

  指通过已知数据点之间的插值方法,来估计或推算出在这些数据点之间的数值。插值可以用于构建平滑的曲线或曲面,以便在数据点之间进行预测或补充缺失的数据。

2. 拟合(Fitting)

  指通过选择合适的函数形式和参数,将一个数学模型与已知数据点拟合得最好的过程。拟合的目标是找到一个函数,使其在数据点附近的值与实际观测值尽可能接近。拟合可以用于数据分析、曲线拟合、回归分析等领域。

3. 投影(Projection)

  指将一个向量或一组向量映射到另一个向量空间或子空间上的过程。在线性代数中,投影可以用来找到一个向量在另一个向量或向量空间上的投影或投影分量。投影可以用于降维、数据压缩、特征提取等领域,以及计算机图形学中的投影变换。

二、Lagrange插值

【数值计算方法(黄明游)】函数插值与曲线拟合(一):Lagrange插值【理论到程序】
   Lagrange插值是一种用于通过已知数据点构造一个多项式函数的方法基于拉格朗日插值多项式的原理(该多项式通过每个数据点并满足相应的条件),拉格朗日插值可用于估计数据点之间的值,而不仅仅是在给定数据点上进行插值。

1. 拉格朗日插值方法

  1. 拉格朗日基函数: 对于给定的插值节点 x 0 , x 1 , … , x n x_0, x_1, \ldots, x_n x0,x1,,xn,拉格朗日插值使用如下的拉格朗日基函数:

    L i ( x ) = ∏ j = 0 , j ≠ i n x − x j x i − x j L_i(x) = \prod_{j=0, j\neq i}^{n} \frac{x - x_j}{x_i - x_j} Li(x)=j=0,j=inxixjxxj

  2. 插值条件: 拉格朗日插值要求插值多项式满足插值条件:对所有 i i i P ( x i ) = y i P(x_i) = y_i P(xi)=yi

  3. 插值多项式: 构造插值多项式为: P ( x ) = ∑ i = 0 n y i L i ( x ) P(x) = \sum_{i=0}^{n} y_i L_i(x) P(x)=i=0nyiLi(x)

  通过这种方法,可以在给定的数据点上获得一个平滑的插值函数,使得在这些数据点之间的任何位置上都可以估计函数的值。Lagrange插值在数据点较少或数据点之间存在较大间隔时可能会出现一些问题,例如插值多项式可能会产生振荡现象,这被称为Runge现象

2. Lagrange插值公式

L i ( x ) = ∏ j = 0 , j ≠ i n x − x j x i − x j L_i(x) = \prod_{j=0, j\neq i}^{n} \frac{x - x_j}{x_i - x_j} Li(x)=j=0,j=inxixjxxj P ( x ) = ∑ i = 0 n y i L i ( x ) P(x) = \sum_{i=0}^{n} y_i L_i(x) P(x)=i=0nyiLi(x)

a. 线性插值(n=1)

P ( x ) = y 0 ( x − x 1 ) ( x 0 − x 1 ) + y 1 ( x − x 0 ) ( x 1 − x 0 ) P(x) = y_0 \frac{(x - x_1)}{(x_0 - x_1)} + y_1 \frac{(x - x_0)}{(x_1 - x_0)} P(x)=y0(x0x1)(xx1)+y1(x1x0)(xx0)

b. 抛物插值(n=2)

P ( x ) = y 0 ( x − x 1 ) ( x − x 2 ) ( x 0 − x 1 ) ( x 0 − x 2 ) + y 1 ( x − x 0 ) ( x − x 2 ) ( x 1 − x 0 ) ( x 1 − x 2 ) + y 2 ( x − x 0 ) ( x − x 1 ) ( x 2 − x 0 ) ( x 2 − x 1 ) P(x) = y_0 \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} + y_1 \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} + y_2 \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} P(x)=y0(x0x1)(x0x2)(xx1)(xx2)+y1(x1x0)(x1x2)(xx0)(xx2)+y2(x2x0)(x2x1)(xx0)(xx1)

三、Newton插值

【数值计算方法(黄明游)】函数插值与曲线拟合(二):Newton插值【理论到程序】

四、三次 Hermite 插值

1. 天书

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

2. 人话

  我们有两个插值节点 x 0 x_0 x0 x 1 x_1 x1,已知在这些节点上的函数值 y 0 = f ( x 0 ) y_0 = f(x_0) y0=f(x0) y 1 = f ( x 1 ) y_1 = f(x_1) y1=f(x1) 和导数值 m 0 = f ′ ( x 0 ) m_0 = f'(x_0) m0=f(x0) m 1 = f ′ ( x 1 ) m_1 = f'(x_1) m1=f(x1)。要求一个三次多项式 H ( x ) H(x) H(x),满足以下插值条件:

  1. H ( x 0 ) = y 0 H(x_0) = y_0 H(x0)=y0,即在 x 0 x_0 x0 节点上的函数值相等。
  2. H ′ ( x 0 ) = m 0 H'(x_0) = m_0 H(x0)=m0,即在 x 1 x_1 x1 节点上的导数值相等。
  3. H ( x 1 ) = y 1 H(x_1) = y_1 H(x1)=y1,即在 x 1 x_1 x1 节点上的函数值相等。
  4. H ′ ( x 1 ) = m 1 H'(x_1) = m_1 H(x1)=m1,即在 x 1 x_1 x1 节点上的导数值相等。

这样的插值问题可以通过构造一个三次多项式 H ( x ) H(x) H(x)来解决。一般而言,Hermite插值的基本形式为:

H ( x ) = h 0 ( x ) y 0 + h 1 ( x ) m 0 + h 2 ( x ) y 1 + h 3 ( x ) m 1 H(x) = h_0(x) y_0 + h_1(x) m_0 + h_2(x) y_1 + h_3(x) m_1 H(x)=h0(x)y0+h1(x)m0+h2(x)y1+h3(x)m1

  其中 h 0 ( x ) , h 1 ( x ) , h 2 ( x ) , h 3 ( x ) h_0(x), h_1(x), h_2(x), h_3(x) h0(x),h1(x),h2(x),h3(x)是一组基函数,它们的形式可以通过需求的导数条件来确定。由于我们要求满足函数值和一阶导数值的条件,基函数的形式可以通过Lagrange插值多项式的导数来得到。

待完善……

3. 例题

在这里插入图片描述

4. python实现

def hermite_interpolation(x, y, m, xi):"""三次 Hermite 插值Parameters:- x: 插值节点的 x 坐标- y: 插值节点的函数值- m: 插值节点的一阶导数值- xi: 要进行插值的点的 x 坐标Returns:- interpolated_value: 在 xi 处的插值结果"""t = (xi - x[0]) / (x[1] - x[0])h0 = (1 - 3 * t**2 + 2 * t**3)h1 = t * (1 - t)**2h2 = xi * (1 - t)**2h3 = xi**2 * (3 - 2 * t)interpolated_value = h0 * y[0] + h1 * y[1] + h2 * m[0] + h3 * m[1]return interpolated_value# 示例数据
x_nodes = [1, 2]
y_values = [2, 3]
derivatives = [1, 2]
xi_value = 1.5# 进行三次 Hermite 插值
interpolated_result = hermite_interpolation(x_nodes, y_values, derivatives, xi_value)# 打印插值结果
print("插值结果:", interpolated_result)

输出:

插值结果: 10.75

这篇关于【数值计算方法(黄明游)】函数插值与曲线拟合(二):三次 Hermite 插值【理论到程序】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/479035

相关文章

PostgreSQL中rank()窗口函数实用指南与示例

《PostgreSQL中rank()窗口函数实用指南与示例》在数据分析和数据库管理中,经常需要对数据进行排名操作,PostgreSQL提供了强大的窗口函数rank(),可以方便地对结果集中的行进行排名... 目录一、rank()函数简介二、基础示例:部门内员工薪资排名示例数据排名查询三、高级应用示例1. 每

全面掌握 SQL 中的 DATEDIFF函数及用法最佳实践

《全面掌握SQL中的DATEDIFF函数及用法最佳实践》本文解析DATEDIFF在不同数据库中的差异,强调其边界计算原理,探讨应用场景及陷阱,推荐根据需求选择TIMESTAMPDIFF或inte... 目录1. 核心概念:DATEDIFF 究竟在计算什么?2. 主流数据库中的 DATEDIFF 实现2.1

golang程序打包成脚本部署到Linux系统方式

《golang程序打包成脚本部署到Linux系统方式》Golang程序通过本地编译(设置GOOS为linux生成无后缀二进制文件),上传至Linux服务器后赋权执行,使用nohup命令实现后台运行,完... 目录本地编译golang程序上传Golang二进制文件到linux服务器总结本地编译Golang程序

MySQL中的LENGTH()函数用法详解与实例分析

《MySQL中的LENGTH()函数用法详解与实例分析》MySQLLENGTH()函数用于计算字符串的字节长度,区别于CHAR_LENGTH()的字符长度,适用于多字节字符集(如UTF-8)的数据验证... 目录1. LENGTH()函数的基本语法2. LENGTH()函数的返回值2.1 示例1:计算字符串

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

MySQL 中的 CAST 函数详解及常见用法

《MySQL中的CAST函数详解及常见用法》CAST函数是MySQL中用于数据类型转换的重要函数,它允许你将一个值从一种数据类型转换为另一种数据类型,本文给大家介绍MySQL中的CAST... 目录mysql 中的 CAST 函数详解一、基本语法二、支持的数据类型三、常见用法示例1. 字符串转数字2. 数字

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

Python函数作用域示例详解

《Python函数作用域示例详解》本文介绍了Python中的LEGB作用域规则,详细解析了变量查找的四个层级,通过具体代码示例,展示了各层级的变量访问规则和特性,对python函数作用域相关知识感兴趣... 目录一、LEGB 规则二、作用域实例2.1 局部作用域(Local)2.2 闭包作用域(Enclos

MySQL count()聚合函数详解

《MySQLcount()聚合函数详解》MySQL中的COUNT()函数,它是SQL中最常用的聚合函数之一,用于计算表中符合特定条件的行数,本文给大家介绍MySQLcount()聚合函数,感兴趣的朋... 目录核心功能语法形式重要特性与行为如何选择使用哪种形式?总结深入剖析一下 mysql 中的 COUNT

MySQL 中 ROW_NUMBER() 函数最佳实践

《MySQL中ROW_NUMBER()函数最佳实践》MySQL中ROW_NUMBER()函数,作为窗口函数为每行分配唯一连续序号,区别于RANK()和DENSE_RANK(),特别适合分页、去重... 目录mysql 中 ROW_NUMBER() 函数详解一、基础语法二、核心特点三、典型应用场景1. 数据分