【数值计算方法(黄明游)】函数插值与曲线拟合(二):三次 Hermite 插值【理论到程序】

本文主要是介绍【数值计算方法(黄明游)】函数插值与曲线拟合(二):三次 Hermite 插值【理论到程序】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


文章目录

  • 一、近似表达方式
    • 1. 插值(Interpolation)
    • 2. 拟合(Fitting)
    • 3. 投影(Projection)
  • 二、Lagrange插值
    • 1. 拉格朗日插值方法
    • 2. Lagrange插值公式
      • a. 线性插值(n=1)
      • b. 抛物插值(n=2)
  • 三、Newton插值
  • 四、三次 Hermite 插值
    • 1. 天书
    • 2. 人话
    • 3. 例题
    • 4. python实现

一、近似表达方式

  插值、拟合和投影都是常用的近似表达方式,用于对数据或函数进行估计、预测或表示。

1. 插值(Interpolation)

  指通过已知数据点之间的插值方法,来估计或推算出在这些数据点之间的数值。插值可以用于构建平滑的曲线或曲面,以便在数据点之间进行预测或补充缺失的数据。

2. 拟合(Fitting)

  指通过选择合适的函数形式和参数,将一个数学模型与已知数据点拟合得最好的过程。拟合的目标是找到一个函数,使其在数据点附近的值与实际观测值尽可能接近。拟合可以用于数据分析、曲线拟合、回归分析等领域。

3. 投影(Projection)

  指将一个向量或一组向量映射到另一个向量空间或子空间上的过程。在线性代数中,投影可以用来找到一个向量在另一个向量或向量空间上的投影或投影分量。投影可以用于降维、数据压缩、特征提取等领域,以及计算机图形学中的投影变换。

二、Lagrange插值

【数值计算方法(黄明游)】函数插值与曲线拟合(一):Lagrange插值【理论到程序】
   Lagrange插值是一种用于通过已知数据点构造一个多项式函数的方法基于拉格朗日插值多项式的原理(该多项式通过每个数据点并满足相应的条件),拉格朗日插值可用于估计数据点之间的值,而不仅仅是在给定数据点上进行插值。

1. 拉格朗日插值方法

  1. 拉格朗日基函数: 对于给定的插值节点 x 0 , x 1 , … , x n x_0, x_1, \ldots, x_n x0,x1,,xn,拉格朗日插值使用如下的拉格朗日基函数:

    L i ( x ) = ∏ j = 0 , j ≠ i n x − x j x i − x j L_i(x) = \prod_{j=0, j\neq i}^{n} \frac{x - x_j}{x_i - x_j} Li(x)=j=0,j=inxixjxxj

  2. 插值条件: 拉格朗日插值要求插值多项式满足插值条件:对所有 i i i P ( x i ) = y i P(x_i) = y_i P(xi)=yi

  3. 插值多项式: 构造插值多项式为: P ( x ) = ∑ i = 0 n y i L i ( x ) P(x) = \sum_{i=0}^{n} y_i L_i(x) P(x)=i=0nyiLi(x)

  通过这种方法,可以在给定的数据点上获得一个平滑的插值函数,使得在这些数据点之间的任何位置上都可以估计函数的值。Lagrange插值在数据点较少或数据点之间存在较大间隔时可能会出现一些问题,例如插值多项式可能会产生振荡现象,这被称为Runge现象

2. Lagrange插值公式

L i ( x ) = ∏ j = 0 , j ≠ i n x − x j x i − x j L_i(x) = \prod_{j=0, j\neq i}^{n} \frac{x - x_j}{x_i - x_j} Li(x)=j=0,j=inxixjxxj P ( x ) = ∑ i = 0 n y i L i ( x ) P(x) = \sum_{i=0}^{n} y_i L_i(x) P(x)=i=0nyiLi(x)

a. 线性插值(n=1)

P ( x ) = y 0 ( x − x 1 ) ( x 0 − x 1 ) + y 1 ( x − x 0 ) ( x 1 − x 0 ) P(x) = y_0 \frac{(x - x_1)}{(x_0 - x_1)} + y_1 \frac{(x - x_0)}{(x_1 - x_0)} P(x)=y0(x0x1)(xx1)+y1(x1x0)(xx0)

b. 抛物插值(n=2)

P ( x ) = y 0 ( x − x 1 ) ( x − x 2 ) ( x 0 − x 1 ) ( x 0 − x 2 ) + y 1 ( x − x 0 ) ( x − x 2 ) ( x 1 − x 0 ) ( x 1 − x 2 ) + y 2 ( x − x 0 ) ( x − x 1 ) ( x 2 − x 0 ) ( x 2 − x 1 ) P(x) = y_0 \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} + y_1 \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} + y_2 \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} P(x)=y0(x0x1)(x0x2)(xx1)(xx2)+y1(x1x0)(x1x2)(xx0)(xx2)+y2(x2x0)(x2x1)(xx0)(xx1)

三、Newton插值

【数值计算方法(黄明游)】函数插值与曲线拟合(二):Newton插值【理论到程序】

四、三次 Hermite 插值

1. 天书

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

2. 人话

  我们有两个插值节点 x 0 x_0 x0 x 1 x_1 x1,已知在这些节点上的函数值 y 0 = f ( x 0 ) y_0 = f(x_0) y0=f(x0) y 1 = f ( x 1 ) y_1 = f(x_1) y1=f(x1) 和导数值 m 0 = f ′ ( x 0 ) m_0 = f'(x_0) m0=f(x0) m 1 = f ′ ( x 1 ) m_1 = f'(x_1) m1=f(x1)。要求一个三次多项式 H ( x ) H(x) H(x),满足以下插值条件:

  1. H ( x 0 ) = y 0 H(x_0) = y_0 H(x0)=y0,即在 x 0 x_0 x0 节点上的函数值相等。
  2. H ′ ( x 0 ) = m 0 H'(x_0) = m_0 H(x0)=m0,即在 x 1 x_1 x1 节点上的导数值相等。
  3. H ( x 1 ) = y 1 H(x_1) = y_1 H(x1)=y1,即在 x 1 x_1 x1 节点上的函数值相等。
  4. H ′ ( x 1 ) = m 1 H'(x_1) = m_1 H(x1)=m1,即在 x 1 x_1 x1 节点上的导数值相等。

这样的插值问题可以通过构造一个三次多项式 H ( x ) H(x) H(x)来解决。一般而言,Hermite插值的基本形式为:

H ( x ) = h 0 ( x ) y 0 + h 1 ( x ) m 0 + h 2 ( x ) y 1 + h 3 ( x ) m 1 H(x) = h_0(x) y_0 + h_1(x) m_0 + h_2(x) y_1 + h_3(x) m_1 H(x)=h0(x)y0+h1(x)m0+h2(x)y1+h3(x)m1

  其中 h 0 ( x ) , h 1 ( x ) , h 2 ( x ) , h 3 ( x ) h_0(x), h_1(x), h_2(x), h_3(x) h0(x),h1(x),h2(x),h3(x)是一组基函数,它们的形式可以通过需求的导数条件来确定。由于我们要求满足函数值和一阶导数值的条件,基函数的形式可以通过Lagrange插值多项式的导数来得到。

待完善……

3. 例题

在这里插入图片描述

4. python实现

def hermite_interpolation(x, y, m, xi):"""三次 Hermite 插值Parameters:- x: 插值节点的 x 坐标- y: 插值节点的函数值- m: 插值节点的一阶导数值- xi: 要进行插值的点的 x 坐标Returns:- interpolated_value: 在 xi 处的插值结果"""t = (xi - x[0]) / (x[1] - x[0])h0 = (1 - 3 * t**2 + 2 * t**3)h1 = t * (1 - t)**2h2 = xi * (1 - t)**2h3 = xi**2 * (3 - 2 * t)interpolated_value = h0 * y[0] + h1 * y[1] + h2 * m[0] + h3 * m[1]return interpolated_value# 示例数据
x_nodes = [1, 2]
y_values = [2, 3]
derivatives = [1, 2]
xi_value = 1.5# 进行三次 Hermite 插值
interpolated_result = hermite_interpolation(x_nodes, y_values, derivatives, xi_value)# 打印插值结果
print("插值结果:", interpolated_result)

输出:

插值结果: 10.75

这篇关于【数值计算方法(黄明游)】函数插值与曲线拟合(二):三次 Hermite 插值【理论到程序】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/479035

相关文章

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

从基础到高级详解Python数值格式化输出的完全指南

《从基础到高级详解Python数值格式化输出的完全指南》在数据分析、金融计算和科学报告领域,数值格式化是提升可读性和专业性的关键技术,本文将深入解析Python中数值格式化输出的相关方法,感兴趣的小伙... 目录引言:数值格式化的核心价值一、基础格式化方法1.1 三种核心格式化方式对比1.2 基础格式化示例

GO语言中函数命名返回值的使用

《GO语言中函数命名返回值的使用》在Go语言中,函数可以为其返回值指定名称,这被称为命名返回值或命名返回参数,这种特性可以使代码更清晰,特别是在返回多个值时,感兴趣的可以了解一下... 目录基本语法函数命名返回特点代码示例命名特点基本语法func functionName(parameters) (nam

Python Counter 函数使用案例

《PythonCounter函数使用案例》Counter是collections模块中的一个类,专门用于对可迭代对象中的元素进行计数,接下来通过本文给大家介绍PythonCounter函数使用案例... 目录一、Counter函数概述二、基本使用案例(一)列表元素计数(二)字符串字符计数(三)元组计数三、C

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

MySQL中REPLACE函数与语句举例详解

《MySQL中REPLACE函数与语句举例详解》在MySQL中REPLACE函数是一个用于处理字符串的强大工具,它的主要功能是替换字符串中的某些子字符串,:本文主要介绍MySQL中REPLACE函... 目录一、REPLACE()函数语法:参数说明:功能说明:示例:二、REPLACE INTO语句语法:参数

基于Python编写自动化邮件发送程序(进阶版)

《基于Python编写自动化邮件发送程序(进阶版)》在数字化时代,自动化邮件发送功能已成为企业和个人提升工作效率的重要工具,本文将使用Python编写一个简单的自动化邮件发送程序,希望对大家有所帮助... 目录理解SMTP协议基础配置开发环境构建邮件发送函数核心逻辑实现完整发送流程添加附件支持功能实现htm

python中update()函数的用法和一些例子

《python中update()函数的用法和一些例子》update()方法是字典对象的方法,用于将一个字典中的键值对更新到另一个字典中,:本文主要介绍python中update()函数的用法和一些... 目录前言用法注意事项示例示例 1: 使用另一个字典来更新示例 2: 使用可迭代对象来更新示例 3: 使用

C#控制台程序同步调用WebApi实现方式

《C#控制台程序同步调用WebApi实现方式》控制台程序作为Job时,需同步调用WebApi以确保获取返回结果后执行后续操作,否则会引发TaskCanceledException异常,同步处理可避免异... 目录同步调用WebApi方法Cls001类里面的写法总结控制台程序一般当作Job使用,有时候需要控制