综述 2022-Genome Biology:“AI+癌症multi-omics”融合方法benchmark

2023-12-10 20:52

本文主要是介绍综述 2022-Genome Biology:“AI+癌症multi-omics”融合方法benchmark,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Leng, Dongjin, et al. "A benchmark study of deep learning-based multi-omics data fusion methods for cancer." Genome biology 23.1 (2022): 1-32.

  • 被引次数:34
  • 作者单位

        

  • 红色高亮表示写论文中可以借鉴的地方

一、方法和数据集

1. 3个数据集:

        模拟多组学数据集、单细胞多组学数据集、癌症多组学数据集

备注:

  • The benchmark cancer multi-omics datasets were downloaded from Multi-Omic Cancer Benchmark.
  • All dataset and codes are available at the https://github.com/zhenglinyi/DL-mo [70] (DOI: A benchmark study of deep learning-based multi-omics data fusion methods for cancer(code) [71]).
  • 模拟数据集生成软件:InterSIM CRAN package [45] 。
    • [45] Chalise P, Raghavan R, Fridley BL. InterSIM: Simulation tool for multiple integrative ‘omic datasets’. Comput Methods Prog Biomed. 2016;128:69–74.
    • 该软件包可以生成复杂且相互关联的多组学数据,包括 DNA 甲基化、mRNA 基因表达和蛋白质表达数据。生成了一百个具有 1000 维特征的模拟样本。在生成过程中,100个模拟样本的簇数参数设置为5、10和15。此外,我们在两种情况下生成每个样本簇:所有簇具有相同的大小,或者簇具有可变的随机大小。这模拟了一个真实的应用场景,其中属于每个簇(子类型)的样本比例可以相同或不同。

2. 16种方法:

        有监督模型(6 个)和无监督模型(10 个)

3. 2个任务:分类和聚类

  •         分类性能评估:accuracy, F1 macro, and F1 weighted
  •         聚类性能评估:Jaccard index (JI), C-index, silhouette score, and Davies Bouldin score

4. 实验细节

  • 对于模拟数据集和单细胞数据集,分别使用六个监督模型和十个无监督模型通过分类和聚类检索真实样本。
  • 对于癌症数据集,在具有真实癌症亚型的五种癌症数据集的分类任务中评估了监督式深度学习方法。同时,在聚类任务中评估了无监督深度学习方法。此外,还评估了嵌入与生存和临床注释的关联。

Fig. 1

二、实验结果

1. 模拟数据集上结果

Fig. 2

  • 图:模拟多组学数据集的评估工作流程。 
    • a InterSIM CRAN 软件包生成了三种用作输入的组学数据。 
    • b 有监督的深度学习方法在分类任务中进行评估。这些方法的性能基于 4 倍交叉验证,并通过三个指标进行评估:accuracy, F1 macro, and F1 weighted。 
    • c 采用无监督深度学习方法融合模拟的多组学数据,首先获得 5 维、10 维和 15 维嵌入。然后使用k-means算法对多组学降维结果进行聚类。采用Jaccard index (JI), C-index, silhouette score, and Davies Bouldin score作为聚类的评价指标

(1)分类(6种监督ML方法)

(2)聚类(10种无监督ML方法)

  • 指标 JI, C-index, silhouette score, and Davies Bouldin score of the ten unsupervised methods 评估
  • ML embedding + k-means聚类 --> 聚类评估

Fig. 3

2. 单细胞数据集上结果

将多组学数据融合方法应用于单细胞多组学数据有助于系统地探索细胞的异质性

单细胞数据集由两种组学数据类型组成,即单细胞染色质可及性数据和单细胞基因表达数据。这两类组学数据的特征数量分别为 49,073 和 207,203。这两个组学数据是从三种不同的癌细胞系(HTC、Hela 和 K562)中获得的,总共 206 个细胞 [48]。

Fig. 4

  • 单细胞多组学数据集评估的工作流程。 
    • 使用两种组学数据作为输入。 
    • b 有监督的深度学习方法在分类任务中进行评估。这些方法的性能基于 4 倍交叉验证,并通过三个指标进行评估:accuracy, F1 macro, and F1 weighted
    • 首先应用无监督深度学习方法融合单细胞多组学数据,获得融合的二维嵌入。然后使用k-means算法将多组学降维结果聚类为三类。采用Jaccard index (JI), C-index, silhouette score, and Davies Bouldin score作为聚类的评价指标

(1)分类(6种监督ML方法)

(2)聚类(10种无监督ML方法)

Fig. 5

3. 癌症数据集上结果

了解癌症的分子和临床特征

癌症基因组图谱 (TCGA) 癌症多组学数据集,该数据集由三种组学数据类型组成:基因表达、DNA 甲基化和 miRNA 表达。

对于分类任务,我们从 TCGA 中收集了具有真实癌症亚型的五种不同的癌症数据集,包括乳腺癌 (BRCA)、胶质母细胞瘤 (GBM)、肉瘤 (SARC)、肺腺癌 (LUAD) 和胃癌 (STAD)。对于聚类任​​务,为了保证评估的真实性,本研究使用的数据来自基准癌症数据集(http://acgt.cs.tau.ac.il/multi_omic_benchmark /download.html) [10]。

Fig. 6

  •  癌症多组学数据集评估的工作流程。 
    • a 使用三种组学数据作为输入。 
    • b 有监督的深度学习方法在分类任务中进行评估。这些方法的性能基于 4 倍交叉验证,并通过三个指标进行评估:accuracy, F1 macro, and F1 weighted
    • c首先应用无监督深度学习方法融合癌症多组学数据,获得融合的10维嵌入。然后使用k-means算法将多组学降维结果聚类为几类。我们采用accard index (JI), C-index, silhouette score, and Davies Bouldin score作为聚类的评价指标。此外,还评估了嵌入与生存和临床注释的关联

(1)分类(6种监督ML方法)

(2)聚类(10种无监督ML方法)

Fig. 7

  • 癌症多组学数据集上十种无监督方法的 Jaccard index (JI), C-index, silhouette score, and Davies Bouldin score以及嵌入与生存和临床注释的关联。 
  •         (a) C-index
  •         (b) silhouette score
  •         (c) Davies Bouldin score
  •         根据癌症数据的聚类计算得出簇的数量设置为二到六。 k-means 聚类运行了 1000 多次。
  •         (d) 与生存有很强关联的嵌入(Bonferroni 校正的 p 值小于 0.05)。 X 轴表示与生存相关的嵌入的数量。 Y 轴代表癌症,每种癌症都分配有一种颜色。
  •         (e) 十种无监督方法针对十种不同癌症类型的选择性得分。高于平均分(0.49)则显示分数,选择性分数越高,橙色块越亮

(3)embedding 与生存和临床注释的关联

Fig. 8

癌症子基准的图形摘要。 a 测试嵌入与生存之间的关联的详细信息。 b测试嵌入与临床注释关联的详细信息

三、讨论

Fig. 9

本研究中以平均统一分数为基准的基于深度学习的多组学数据融合方法。 a 监督模型在三个不同数据集中的统一性能。 b 无监督模型在三个不同数据集中的统一性能。我们以各个场景的统一最高分作为参考(标记为100%)来计算百分比

这篇关于综述 2022-Genome Biology:“AI+癌症multi-omics”融合方法benchmark的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/478339

相关文章

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

JavaScript中的高级调试方法全攻略指南

《JavaScript中的高级调试方法全攻略指南》什么是高级JavaScript调试技巧,它比console.log有何优势,如何使用断点调试定位问题,通过本文,我们将深入解答这些问题,带您从理论到实... 目录观点与案例结合观点1观点2观点3观点4观点5高级调试技巧详解实战案例断点调试:定位变量错误性能分

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法

《JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法》:本文主要介绍JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法,每种方法结合实例代码给大家介绍的非常... 目录引言:为什么"相等"判断如此重要?方法1:使用some()+includes()(适合小数组)方法2

504 Gateway Timeout网关超时的根源及完美解决方法

《504GatewayTimeout网关超时的根源及完美解决方法》在日常开发和运维过程中,504GatewayTimeout错误是常见的网络问题之一,尤其是在使用反向代理(如Nginx)或... 目录引言为什么会出现 504 错误?1. 探索 504 Gateway Timeout 错误的根源 1.1 后端

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

MySQL 表空却 ibd 文件过大的问题及解决方法

《MySQL表空却ibd文件过大的问题及解决方法》本文给大家介绍MySQL表空却ibd文件过大的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录一、问题背景:表空却 “吃满” 磁盘的怪事二、问题复现:一步步编程还原异常场景1. 准备测试源表与数据

python 线程池顺序执行的方法实现

《python线程池顺序执行的方法实现》在Python中,线程池默认是并发执行任务的,但若需要实现任务的顺序执行,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋... 目录方案一:强制单线程(伪顺序执行)方案二:按提交顺序获取结果方案三:任务间依赖控制方案四:队列顺序消

SpringBoot通过main方法启动web项目实践

《SpringBoot通过main方法启动web项目实践》SpringBoot通过SpringApplication.run()启动Web项目,自动推断应用类型,加载初始化器与监听器,配置Spring... 目录1. 启动入口:SpringApplication.run()2. SpringApplicat