两种折线的等距离分割方法(折线等分点)的python源码实现与比较 比例单元法与分步法

本文主要是介绍两种折线的等距离分割方法(折线等分点)的python源码实现与比较 比例单元法与分步法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

之前写过比例单元分割,现在修改如下getSplitXY,返回不含原来折点折线等分点数组与含原来折点的两个数组。经过比较检验,比例单元法与分步法的时间效率与N,n有关,见注释,分步法只返回包含原来折点的等分数组,可自行优化。代码如下:

import math
import time
import randomimport matplotlib.pyplot as plt# 与N n定有关,但还有其他因素,有时候第一种快,有时候第二种快 表面看有第一种性能更好;但因为前者有些不够完善,有影响,因此两种方法均可行
N = random.randint(5, 60)  # 第二种考虑因素多,某些情况会更加直观得出结果,因此有时候快,但是数据量越大,不确定因素越大,因此时间差距拉开
# 时间计算  N-n差值越大,用分步法,N-n越小,用比例法,正常情况差不多
line_coords = [[0, 0]]
print(f'N原始分段数值取:{N}')
while N >= 0:dx = random.randint(-1, 5)dy = random.randint(-1, 5)x = line_coords[len(line_coords) - 1][0] + dxy = line_coords[len(line_coords) - 1][1] + dyline_coords.insert(len(line_coords), [x, y])N = N - 1
n = random.randint(5,20)# 100段分1000以上会快一点
print(f'n目标等量分割值取:{n}')
# 总注释:比例单元分割法   不带详细注释版
print(f'原始坐标:{line_coords}')
t0 = time.time()# 分步法
def split_line(line_coords, n):# 计算折线总长度total_len = 0for i in range(len(line_coords) - 1):total_len += ((line_coords[i][0] - line_coords[i + 1][0]) ** 2 + (line_coords[i][1] - line_coords[i + 1][1]) ** 2) ** 0.5# 计算等分长度dis = total_len / n# 初始化等分点数组split_points = [line_coords[0]]# 计算等分点坐标i = 0while i < len(line_coords) - 1:# 计算当前线段长度cur_len = ((line_coords[i][0] - line_coords[i + 1][0]) ** 2 + (line_coords[i][1] - line_coords[i + 1][1]) ** 2) ** 0.5if cur_len < dis:# 如果当前线段长度小于等分长度,则跳过该线段dis -= cur_leni += 1else:# 计算等分点坐标ratio = dis / cur_lenx = line_coords[i][0] + ratio * (line_coords[i + 1][0] - line_coords[i][0])y = line_coords[i][1] + ratio * (line_coords[i + 1][1] - line_coords[i][1])split_points.append([x, y])line_coords.insert(i + 1, [x, y])dis = total_len / ni += 1# 确保最后一个点是折线的最后一个点if split_points[-1] != line_coords[-1]:split_points.append(line_coords[-1])return split_points# 比例归元法
def getSplitXY(array_xy,n):# 直角坐标距离计算 可以模拟经纬度距离 经过检验,不影响经纬度结果,这里使用直角坐标系距离计算# 提示:网络文章计算根据经纬度计算距离的函数方法可能有误,请自行检测def getDisArrDxy(array_xy):disArr = []dxy = []i = 0while i < len(array_xy) - 1:dx = array_xy[i + 1][0] - array_xy[i][0]dy = array_xy[i + 1][1] - array_xy[i][1]dis = (dx * dx + dy * dy) ** 0.5dxy.insert(i, [dx, dy])disArr.insert(i, dis)i = i + 1if i == len(array_xy) - 1:breakreturn disArr, dxyDisDxy = getDisArrDxy(array_xy)newdisArr = DisDxy[0]newDxy = DisDxy[1]# print(newDxy)# 等距离分隔值 分割常量dis = sum(newdisArr) / ndef IsEqual(x, y):IsEqual = FalseN1 = abs(x - y)if N1 < 0.000000001:IsEqual = Truereturn IsEqualdef IsInt(x):IsInt = FalseN1 = math.ceil(x) - xN2 = x - math.floor(x)if N1 < 0.000000001:x = math.ceil(x)return xif N2 < 0.000000001:x = math.floor(x)return xelse:return IsInt# 获取与分隔值比例数组 ArrDis 各分段Dis[i]/Dis# 比例初步整化 核心1def getIntRes(arrArr, array_xy):insert_xy = array_xy.copy()scale = arrArr.copy()# 剩余dis remanent 每一段最后一个取点位置 参考起点首个def getremanSc(scale):res = []sum = 0float = 0nn = 1  # 第1段开始取 目标段for i in range(0, len(scale)):sum = sum + scale[i]sc = sum / disif sc <= nn:  # 可插点的索引float = 1else:nn = math.ceil(sc)float = (scale[i] - (sum % dis)) / scale[i]res.insert(len(res), float)return resremanSc = getremanSc(scale)# 每一段第一个取点位置 参考起点首个def getFirst(scale):res = []sum = 0float = 0nn = 1  # 第1段开始取 目标段for i in range(0, len(scale)):sum = sum + scale[i]sc = sum / disif sc < nn:  # 可插点的索引float = 1else:nn = math.ceil(sc)float = 1 - (scale[i] - (sum % dis)) / scale[i]res.insert(len(res), float)return res#  每一段第一个取点位置  、参考起点尾scale.reverse()intSC = getFirst(scale)intSC.reverse()equalPts=[]# 整数化 比例分割def getIntSc(insert_xy, newDxy, intSC, remanSc):res = insert_xy.copy()j = 0for i in range(0, len(insert_xy) - 1):x0 = insert_xy[i][0] + newDxy[i][0] * intSC[i]y0 = insert_xy[i][1] + newDxy[i][1] * intSC[i]x1 = insert_xy[i][0] + newDxy[i][0] * remanSc[i]y1 = insert_xy[i][1] + newDxy[i][1] * remanSc[i]if IsEqual(insert_xy[i][0], x0) == True and IsEqual(insert_xy[i][1], y0) == True:res.insert(i + j + 1, [x1, y1])j = j + 1elif IsEqual(insert_xy[i+1][0], x1) == True and IsEqual(insert_xy[i+1][1], y1)==True:continueelse:if IsEqual(x0, x1) == True and IsEqual(y0, y1) == True:res.insert(i + j + 1, [x1, y1])j = j + 1else:res.insert(i + j + 1, [x0, y0])j = j + 1res.insert(i + j + 1, [x1, y1])j = j + 1return res# ("整数化 比例分割")res = getIntSc(insert_xy, newDxy, intSC, remanSc)return resgetIntxy = getIntRes(newdisArr, array_xy)resxy = getDisArrDxy(getIntxy)# cell单元化def getresxy(Intxy, intDisXY):rexy = Intxy.copy()j = 0for i in range(0, len(Intxy) - 1):if intDisXY[0][i] > dis:nn = (intDisXY[0][i] / dis)nn = IsInt(nn)ii = 1while ii < nn:x = Intxy[i][0] + ((((ii) * dis)) / intDisXY[0][i]) * intDisXY[1][i][0]y = Intxy[i][1] + ((((ii) * dis)) / intDisXY[0][i]) * intDisXY[1][i][1]if IsEqual(x,Intxy[i+1][0])==True and IsEqual(y,Intxy[i+1][1])==True:breakelse:rexy.insert(i + j + 1, [x, y])j = j + 1ii = ii + 1return rexyres_xy = getresxy(getIntxy, resxy)#print(res_xy)# cell 不含原折点坐标eqXY = [i for i in res_xy if i not in array_xy]#print(eqXY)return eqXY,res_xycellres = getSplitXY(line_coords, n)[0]
print(f'getSlitXY花费时间:{time.time() - t0:.11f}s')
print(cellres)
t1 = time.time()
xy = split_line(line_coords, n)
print(f'split_line花费时间:{time.time() - t1:.11f}s')
print(xy)
# 画出坐标系和折线
fig, ax = plt.subplots()
x_coords = [coord[0] for coord in line_coords]
y_coords = [coord[1] for coord in line_coords]
ax.plot(x_coords, y_coords)
# 计算折线长度# 画出等分点
x_coords = [coord[0] for coord in cellres]
y_coords = [coord[1] for coord in cellres]
ax.plot(x_coords, y_coords, 'ro')
# x_coord = [coord[0] for coord in xy]
# y_coord = [coord[1] for coord in xy]
# ax.plot(x_coord, y_coord, 'ro')plt.show()

getSplitXY的【0】示意图:

split_line函数目前只有一个小问题,就是每一段最后一个点实际与折线端点可能一样,但是不影响结果,可以用。

getSplitXY函数已经得到优化,相比于之前,大幅减少转化,原理参考上一篇文章。

split_line,getSlitXY的处理能力各有长处。一般情况都可以使用,大量数据的时候参考N,n差值

这篇关于两种折线的等距离分割方法(折线等分点)的python源码实现与比较 比例单元法与分步法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/477228

相关文章

使用FileChannel实现文件的复制和移动方式

《使用FileChannel实现文件的复制和移动方式》:本文主要介绍使用FileChannel实现文件的复制和移动方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录使用 FileChannel 实现文件复制代码解释使用 FileChannel 实现文件移动代码解释

Spring实现Bean的初始化和销毁的方式

《Spring实现Bean的初始化和销毁的方式》:本文主要介绍Spring实现Bean的初始化和销毁的方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、Bean的初始化二、Bean的销毁总结在前面的章节当中介绍完毕了ApplicationContext,也就

Java中的getBytes()方法使用详解

《Java中的getBytes()方法使用详解》:本文主要介绍Java中getBytes()方法使用的相关资料,getBytes()方法有多个重载形式,可以根据需要指定字符集来进行转换,文中通过代... 目录前言一、常见重载形式二、示例代码三、getBytes(Charset charset)和getByt

Python多重继承慎用的地方

《Python多重继承慎用的地方》多重继承也可能导致一些问题,本文主要介绍了Python多重继承慎用的地方,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录前言多重继承要慎用Mixin模式最后前言在python中,多重继承是一种强大的功能,它允许一个

python+OpenCV反投影图像的实现示例详解

《python+OpenCV反投影图像的实现示例详解》:本文主要介绍python+OpenCV反投影图像的实现示例详解,本文通过实例代码图文并茂的形式给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一、前言二、什么是反投影图像三、反投影图像的概念四、反向投影的工作原理一、利用反向投影backproj

Django之定时任务django-crontab的实现

《Django之定时任务django-crontab的实现》Django可以使用第三方库如django-crontab来实现定时任务的调度,本文主要介绍了Django之定时任务django-cront... 目录crontab安装django-crontab注册应用定时时间格式定时时间示例设置定时任务@符号

Python中edge-tts实现便捷语音合成

《Python中edge-tts实现便捷语音合成》edge-tts是一个功能强大的Python库,支持多种语言和声音选项,本文主要介绍了Python中edge-tts实现便捷语音合成,具有一定的参考价... 目录安装与环境设置文本转语音查找音色更改语音参数生成音频与字幕总结edge-tts 是一个功能强大的

Java实现按字节长度截取字符串

《Java实现按字节长度截取字符串》在Java中,由于字符串可能包含多字节字符,直接按字节长度截取可能会导致乱码或截取不准确的问题,下面我们就来看看几种按字节长度截取字符串的方法吧... 目录方法一:使用String的getBytes方法方法二:指定字符编码处理方法三:更精确的字符编码处理使用示例注意事项方

使用Python和PaddleOCR实现图文识别的代码和步骤

《使用Python和PaddleOCR实现图文识别的代码和步骤》在当今数字化时代,图文识别技术的应用越来越广泛,如文档数字化、信息提取等,PaddleOCR是百度开源的一款强大的OCR工具包,它集成了... 目录一、引言二、环境准备2.1 安装 python2.2 安装 PaddlePaddle2.3 安装

Python+PyQt5开发一个Windows电脑启动项管理神器

《Python+PyQt5开发一个Windows电脑启动项管理神器》:本文主要介绍如何使用PyQt5开发一款颜值与功能并存的Windows启动项管理工具,不仅能查看/删除现有启动项,还能智能添加新... 目录开篇:为什么我们需要启动项管理工具功能全景图核心技术解析1. Windows注册表操作2. 启动文件