概率密度函数(PDF)正态分布

2023-12-09 21:01

本文主要是介绍概率密度函数(PDF)正态分布,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

概率密度函数(PDF)是一个描述连续随机变量取特定值的相对可能性的函数。对于正态分布的情况,其PDF有一个特定的形式,这个形式中包括了一个常数乘以一个指数函数,它假设误差项服从均值为0的正态分布:
正太分布(高斯分布)
p ( ϵ ( i ) ) = 1 2 π σ 2 exp ⁡ ( − ( ϵ ( i ) ) 2 2 σ 2 ) p(\epsilon^{(i)}) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(\epsilon^{(i)})^2}{2\sigma^2}\right) p(ϵ(i))=2πσ2 1exp(2σ2(ϵ(i))2)
各名词解释:
p ( ϵ ( i ) ) p(\epsilon^{(i)}) p(ϵ(i)):这部分表示给定误差 ϵ ( i ) \epsilon^{(i)} ϵ(i)的概率密度。

σ 2 \sigma^2 σ2:正态分布的形状完全由两个参数决定:均值( μ \mu μ)和方差( σ 2 \sigma^2 σ2)。均值决定了分布的中心位置,而方差(标准差的平方)决定了分布的离散程度。这里均值( μ \mu μ)都假设为0因此不讨论。详细解释一下 σ 2 \sigma^2 σ2

  1. σ 2 \sigma^2 σ2是分布宽度的度量, σ 2 \sigma^2 σ2的数值表示数据分布的离散程度: σ 2 \sigma^2 σ2越大,数据分布越分散; σ 2 \sigma^2 σ2越小,数据分布越集中(如上图中的钟形越瘦)。
  2. σ 2 \sigma^2 σ2的计算过程:
    a.假设你有一组数据 X = { x 1 , x 2 , . . . , x n } X = \{x_1, x_2, ..., x_n\} X={x1,x2,...,xn},且已知均值 μ \mu μ为0。
    b.计算每个数据点的平方: x i 2 x_i^2 xi2计算了每个数据点距离均值(0)的距离的平方。
    c.计算这些平方的平均值(即方差 σ 2 \sigma^2 σ2): σ 2 = 1 n ∑ i = 1 n x i 2 \sigma^2 = \frac{1}{n} \sum_{i=1}^{n} x_i^2 σ2=n1i=1nxi2(即 x i 2 x_i^2 xi2求和后平均)

1 2 π σ 2 \frac{1}{\sqrt{2\pi\sigma^2}} 2πσ2 1:这是正态分布概率密度函数的前缀,其中 σ 2 \sigma^2 σ2是方差。它的作用是确保概率密度函数(PDF)的积分——也就是函数下整个面积等于1。在数学上,这意味着对于连续概率分布,确保所有概率值的总和为1。

exp: e e e是一个重要的数学常数(自然对数的底数),约等于2.71828,而exp是 e e e的幂。exp用于计算概率的指数部分,确保了大多数数据点都集中在平均值附近,而远离均值的数据点则呈指数级减少,就是让曲线呈“钟形曲线(高斯分布)”。

− ( ϵ ( i ) ) 2 2 σ 2 -\frac{(\epsilon^{(i)})^2}{2\sigma^2} 2σ2(ϵ(i))2:这是exp指数函数内的幂,代表了 ϵ ( i ) \epsilon^{(i)} ϵ(i)偏离均值0的程度。

  1. 由于我们假设误差项 ϵ \epsilon ϵ均值为0,所以这里直接用 ϵ ( i ) \epsilon^{(i)} ϵ(i)。这个比例的平方表示了误差项的值距离均值(0)的距离的平方,然后除以 2 σ 2 {2\sigma^2} 2σ2来“标准化”这个距离。在正态分布中,这个距离的平方越大,观测到该误差的概率就越低。
  2. 这个过程与误差项 ϵ ( i ) \epsilon^{(i)} ϵ(i)的值(第 i i i个数据点的误差项)的平方成正比,这里的平方是必要的,因为我们对误差的大小感兴趣,而不管它是正的还是负的。平方确保了所有的误差值都是非负的,且更大的误差(无论正负)都会产生更大的平方值。
  3. 与方差 σ 2 {\sigma^2} σ2的两倍成反比,这里 σ 2 {\sigma^2} σ2表示整个数据集中的误差项的分布宽度。方差的两倍是概率密度函数的标准组成部分,用于“标准化”误差项的平方,这样不同的分布(具有不同的方差)就可以使用相同的函数形式。这里的乘以 1 2 σ 2 \frac{1}{2\sigma^2} 2σ21类似于计算出“相对”值而不是“绝对”值,在不改变误差项的方向的情况下,调整它的相对重要性。主要作用是:由于不同的数据集可能有不同的方差(即不同的误差分布宽度),我们需要有一种方式来标准化这些误差,使它们可以在统一的尺度上比较。
  4. − 1 2 σ 2 -\frac{1}{2\sigma^2} 2σ21:这个负号和分母 2 σ 2 {2\sigma^2} 2σ2一起工作,形成一个比例因子,表示一个衰减的过程,它反映了误差项 ϵ ( i ) \epsilon^{(i)} ϵ(i)相对于方差的大小。由于是负指数,误差项的平方越大, e e e的幂就越小,从而降低了该误差值的概率密度。

这篇关于概率密度函数(PDF)正态分布的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/475044

相关文章

C#实现一键批量合并PDF文档

《C#实现一键批量合并PDF文档》这篇文章主要为大家详细介绍了如何使用C#实现一键批量合并PDF文档功能,文中的示例代码简洁易懂,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言效果展示功能实现1、添加文件2、文件分组(书签)3、定义页码范围4、自定义显示5、定义页面尺寸6、PDF批量合并7、其他方法

基于C#实现PDF转图片的详细教程

《基于C#实现PDF转图片的详细教程》在数字化办公场景中,PDF文件的可视化处理需求日益增长,本文将围绕Spire.PDFfor.NET这一工具,详解如何通过C#将PDF转换为JPG、PNG等主流图片... 目录引言一、组件部署二、快速入门:PDF 转图片的核心 C# 代码三、分辨率设置 - 清晰度的决定因

Python自动化处理PDF文档的操作完整指南

《Python自动化处理PDF文档的操作完整指南》在办公自动化中,PDF文档处理是一项常见需求,本文将介绍如何使用Python实现PDF文档的自动化处理,感兴趣的小伙伴可以跟随小编一起学习一下... 目录使用pymupdf读写PDF文件基本概念安装pymupdf提取文本内容提取图像添加水印使用pdfplum

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

Java高效实现Word转PDF的完整指南

《Java高效实现Word转PDF的完整指南》这篇文章主要为大家详细介绍了如何用Spire.DocforJava库实现Word到PDF文档的快速转换,并解析其转换选项的灵活配置技巧,希望对大家有所帮助... 目录方法一:三步实现核心功能方法二:高级选项配置性能优化建议方法补充ASPose 实现方案Libre

使用Python提取PDF大纲(书签)的完整指南

《使用Python提取PDF大纲(书签)的完整指南》PDF大纲(Outline)​​是PDF文档中的导航结构,通常显示在阅读器的侧边栏中,方便用户快速跳转到文档的不同部分,大纲通常以层级结构组织,包含... 目录一、PDF大纲简介二、准备工作所需工具常见安装问题三、代码实现完整代码核心功能解析四、使用效果控

基于Python实现进阶版PDF合并/拆分工具

《基于Python实现进阶版PDF合并/拆分工具》在数字化时代,PDF文件已成为日常工作和学习中不可或缺的一部分,本文将详细介绍一款简单易用的PDF工具,帮助用户轻松完成PDF文件的合并与拆分操作... 目录工具概述环境准备界面说明合并PDF文件拆分PDF文件高级技巧常见问题完整源代码总结在数字化时代,PD

Python实现Word转PDF全攻略(从入门到实战)

《Python实现Word转PDF全攻略(从入门到实战)》在数字化办公场景中,Word文档的跨平台兼容性始终是个难题,而PDF格式凭借所见即所得的特性,已成为文档分发和归档的标准格式,下面小编就来和大... 目录一、为什么需要python处理Word转PDF?二、主流转换方案对比三、五套实战方案详解方案1:

java中pdf模版填充表单踩坑实战记录(itextPdf、openPdf、pdfbox)

《java中pdf模版填充表单踩坑实战记录(itextPdf、openPdf、pdfbox)》:本文主要介绍java中pdf模版填充表单踩坑的相关资料,OpenPDF、iText、PDFBox是三... 目录准备Pdf模版方法1:itextpdf7填充表单(1)加入依赖(2)代码(3)遇到的问题方法2:pd

Python操作PDF文档的主流库使用指南

《Python操作PDF文档的主流库使用指南》PDF因其跨平台、格式固定的特性成为文档交换的标准,然而,由于其复杂的内部结构,程序化操作PDF一直是个挑战,本文主要为大家整理了Python操作PD... 目录一、 基础操作1.PyPDF2 (及其继任者 pypdf)2.PyMuPDF / fitz3.Fre