编程之美 买票找零 写的太赞了!

2023-12-09 05:38

本文主要是介绍编程之美 买票找零 写的太赞了!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文上半部分来自CSDN博客,转载请标明出处:http://blog.csdn.net/jeiwt/archive/2010/01/30/5272541.aspx

下半部分转载自http://yishan.cc/blogs/gpww/archive/2009/10/08/2-1-catalan.aspx


题目描述:

假设有2N个人在排队买票,其中有N个人手持50元的钞票,另外有N个人手持100元的钞票,假设开始售票时,售票处没有零钱,问这2N个人有多少种排队方式,不至使售票处出现找不开钱的局面?

题目分析:

这题时典型的卡特兰数(Cartalan)问题


最典型的四类应用(实质上却都一样,无非是递归等式的应用,就看你能不能分解问题写出递归式了)
1.括号化问题。
矩阵链乘: P=a1×a2×a3×……×an,依据乘法结合律,不改变其顺序,只用括号表示成对的乘积,试问有几种括号化的方案?(h(n)种)
2.出栈次序问题。
一个栈(无穷大)的进栈序列为1,2,3,..n,有多少个不同的出栈序列?
类似:有2n个人排成一行进入剧场。入场费5元。其中只有n个人有一张5元钞票,另外n人只有10元钞票,剧院无其它钞票,问有多少中方法使得只要有10元的人买票,售票处就有5元的钞票找零?(将持5元者到达视作将5元入栈,持10元者到达视作使栈中某5元出栈)

3.将多边行划分为三角形问题。
将一个凸多边形区域分成三角形区域的方法数?
类似:一位大城市的律师在她住所以北n个街区和以东n个街区处工作。每天她走2n个街区去上班。如果她
从不穿越(但可以碰到)从家到办公室的对角线,那么有多少条可能的道路?
类似:在圆上选择2n个点,将这些点成对连接起来使得所得到的n条线段不相交的方法数?
4.给顶节点组成二叉树的问题。
给定N个节点,能构成多少种形状不同的二叉树?
(一定是二叉树!
先去一个点作为顶点,然后左边依次可以取0至N-1个相对应的,右边是N-1到0个,两两配对相乘,就是h(0)*h(n-1) + h(2)*h(n-2) + ... + h(n-1)h(0)=h(n))
(能构成h(N)个)




Cartalan数

令h(1)=1

h(n) = h(1)*h(n-1) + h(2)*h(n-2) + h(3)*h(n-3) + ....+h(n-1)*h(1) (其中n>=2)

该递归求解为h(n) = C(2n, n)/(n+1)

-------------------------------------------------------------------------------

Catalan数

中文:卡特兰数
原理:
令h(1)=1,catalan数满足递归式:
h(n)= h(1)*h(n-1) + h(2)*h(n-2) + ... + h(n-1)h(1) (其中n>=2)
另类递归式:
h(n)=((4*n-6)/(n))*h(n-1);
该递推关系的解为:
h(n)=C(2n,n)/(n + 1) (n=1,2,3,...)

最典型的四类应用(实质上却都一样,无非是递归等式的应用,就看你能不能分解问题写出递归式了)
1.括号化问题。
矩阵链乘: P=a1×a2×a3×……×an,依据乘法结合律,不改变其顺序,只用括号表示成对的乘积,试问有几种括号化的方案?(h(n)种)
2.出栈次序问题。
一个栈(无穷大)的进栈序列为1,2,3,..n,有多少个不同的出栈序列?
类似:有2n个人排成一行进入剧场。入场费5元。其中只有n个人有一张5元钞票,另外n人只有10元钞票,剧院无其它钞票,问有多少中方法使得只要有10元的人买票,售票处就有5元的钞票找零?(将持5元者到达视作将5元入栈,持10元者到达视作使栈中某5元出栈)

3.将多边行划分为三角形问题。
将一个凸多边形区域分成三角形区域的方法数?
类似:一位大城市的律师在她住所以北n个街区和以东n个街区处工作。每天她走2n个街区去上班。如果她
从不穿越(但可以碰到)从家到办公室的对角线,那么有多少条可能的道路?
类似:在圆上选择2n个点,将这些点成对连接起来使得所得到的n条线段不相交的方法数?
4.给顶节点组成二叉树的问题。
给定N个节点,能构成多少种形状不同的二叉树?
(一定是二叉树!
先去一个点作为顶点,然后左边依次可以取0至N-1个相对应的,右边是N-1到0个,两两配对相乘,就是h(0)*h(n-1) + h(2)*h(n-2) + ... + h(n-1)h(0)=h(n))
(能构成h(N)个)




*连载转贴自http://gpww.blog.163.com,如图片显示有问题,请到原帖...

问题

《编程之美》中提到了“买票找零”问题,查阅了下资料,此问题和卡特兰数 Cn有关,其定义如下:

image

卡特兰数真是一个神奇的数字,很多组合问题的数量都和它有关系,例如:

  • Cn= 长度为 2n的 Dyck words的数量。 Dyck words是由 n个 X和 n个 Y组成的字符串,并且从左往右数, Y的数量不超过 X,例如长度为 6的 Dyck words为:

XXXYYY XYXXYY XYXYXY XXYYXY XXYXYY

  • Cn= n对括号正确匹配组成的字符串数,例如 3对括号能够组成:

((())) ()(()) ()()() (())() (()())

  • Cn= n+1个数相乘,所有的括号方案数。例如, 4个数相乘的括号方案为:


((ab)c)d (a(bc))d (ab)(cd) a((bc)d) a(b(cd))

  • Cn= 拥有 n+1 个叶子节点的二叉树的数量。例如 4个叶子节点的所有二叉树形态:

Catalan number binary tree example.png

  • Cn=n*n的方格地图中,从一个角到另外一个角,不跨越对角线的路径数,例如, 4×4方格地图中的路径有:

Catalan number 4x4 grid example.svg

  • Cn= n+2条边的多边形,能被分割成三角形的方案数,例如 6边型的分割方案有:

Catalan-Hexagons-example.svg

  • Cn= 圆桌周围有 2n个人,他们两两握手,但没有交叉的方案数。

在《Enumerative Combinatorics》一书中,竟然提到了多达 66种组合问题和卡特兰数有关。

分析

“卡特兰数”除了可以使用公式计算,也可以采用“分级排列法”来求解。以 n对括弧的合法匹配为例,对于一个序列 (()而言,有两个左括弧,和一个右括弧,可以看成“抵消了一对括弧,还剩下一个左括弧等待抵消”,那么说明还可以在末尾增加一个右括弧,或者一个左括弧,没有左括弧剩余的时候,不能添加右括弧。
由此,问题可以理解为,总共 2n个括弧,求 1~2n级的情况,第 i 级保存所有剩余 i 个左括号的排列方案数。 1~8级的计算过程如下表:

image

计算过程解释如下: 1级:只能放 1个“(”; 2级:可以在一级末尾增加一个“)”或者一个“ (”
以后每级计算时,如果遇到剩余 n>0个“(”的方案,可以在末尾增加一个“ (”或者“ )”进入下一级;遇到剩余 n=0个“(”的方案,可以在末尾增加一个“ (”进入下一级。

奇数级只能包含剩余奇数个“(”的排列方案
偶数级只能包含剩余偶数个“(”的排列方案

从表中可以看出,灰色部分可以不用计算。

解法

关键代码为:

        double Catalan(int n){if (n == 0) return 1; for (int i = 2; i <= 2 * n; i++){var m = i <= n ? i : 2 * n + 1 - i;for (int j = (i - 1) & 1; j <= m; j += 2){if (j > 0) arr[j - 1] += arr[j];if (j < n) arr[j + 1] += arr[j];arr[j] = 0;}}return arr[0];}

其中:
n为 Cn中的 n;
arr = new double[n + 1];//arrIdea代表有 k个括弧的时候,剩余 "("个数为 i的排列方案个数 arr[1] = 1;

讨论

算法复杂度为image= O(n^2),空间复杂度为 O(n+1)。相对于利用公式计算而言,此方法的优势在于——没有乘除法,只有加法。


这篇关于编程之美 买票找零 写的太赞了!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/472651

相关文章

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

MySQL的JDBC编程详解

《MySQL的JDBC编程详解》:本文主要介绍MySQL的JDBC编程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言一、前置知识1. 引入依赖2. 认识 url二、JDBC 操作流程1. JDBC 的写操作2. JDBC 的读操作总结前言本文介绍了mysq

Python异步编程之await与asyncio基本用法详解

《Python异步编程之await与asyncio基本用法详解》在Python中,await和asyncio是异步编程的核心工具,用于高效处理I/O密集型任务(如网络请求、文件读写、数据库操作等),接... 目录一、核心概念二、使用场景三、基本用法1. 定义协程2. 运行协程3. 并发执行多个任务四、关键

AOP编程的基本概念与idea编辑器的配合体验过程

《AOP编程的基本概念与idea编辑器的配合体验过程》文章简要介绍了AOP基础概念,包括Before/Around通知、PointCut切入点、Advice通知体、JoinPoint连接点等,说明它们... 目录BeforeAroundAdvise — 通知PointCut — 切入点Acpect — 切面

C#异步编程ConfigureAwait的使用小结

《C#异步编程ConfigureAwait的使用小结》本文介绍了异步编程在GUI和服务器端应用的优势,详细的介绍了async和await的关键作用,通过实例解析了在UI线程正确使用await.Conf... 异步编程是并发的一种形式,它有两大好处:对于面向终端用户的GUI程序,提高了响应能力对于服务器端应

C# async await 异步编程实现机制详解

《C#asyncawait异步编程实现机制详解》async/await是C#5.0引入的语法糖,它基于**状态机(StateMachine)**模式实现,将异步方法转换为编译器生成的状态机类,本... 目录一、async/await 异步编程实现机制1.1 核心概念1.2 编译器转换过程1.3 关键组件解析

Go语言数据库编程GORM 的基本使用详解

《Go语言数据库编程GORM的基本使用详解》GORM是Go语言流行的ORM框架,封装database/sql,支持自动迁移、关联、事务等,提供CRUD、条件查询、钩子函数、日志等功能,简化数据库操作... 目录一、安装与初始化1. 安装 GORM 及数据库驱动2. 建立数据库连接二、定义模型结构体三、自动迁

Python 异步编程 asyncio简介及基本用法

《Python异步编程asyncio简介及基本用法》asyncio是Python的一个库,用于编写并发代码,使用协程、任务和Futures来处理I/O密集型和高延迟操作,本文给大家介绍Python... 目录1、asyncio是什么IO密集型任务特征2、怎么用1、基本用法2、关键字 async1、async

Java并发编程之如何优雅关闭钩子Shutdown Hook

《Java并发编程之如何优雅关闭钩子ShutdownHook》这篇文章主要为大家详细介绍了Java如何实现优雅关闭钩子ShutdownHook,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起... 目录关闭钩子简介关闭钩子应用场景数据库连接实战演示使用关闭钩子的注意事项开源框架中的关闭钩子机制1.

shell编程之函数与数组的使用详解

《shell编程之函数与数组的使用详解》:本文主要介绍shell编程之函数与数组的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录shell函数函数的用法俩个数求和系统资源监控并报警函数函数变量的作用范围函数的参数递归函数shell数组获取数组的长度读取某下的