多段图问题-动态规划解法

2023-12-09 04:36

本文主要是介绍多段图问题-动态规划解法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、多段图问题

问题描述:设图G=(V, E)是一个带权有向图,如果把顶点集合V划分成k个互不相交的子集Vi (2≤k≤n, 1≤i≤k),使得对于E中的任何一条边(u, v),必有u∈Vi,v∈Vi+m (1≤i≤k, 1<i+m≤k),则称图G为多段图,称s∈V1为源点,t∈Vk为终点。多段图的最短路径问题求从源点到终点的最小代价路径。

二、抽象分析

设Cu-v表示多段图的有向边<u, v>上的权值,将从源点s到终点t的最短路径长度记为d(s, t),考虑原问题的部分解d(s, v),显然有下式成立:

d(s, v) =Cs-v (<s, v>∈E)

d(s, v) = min{d(s, u) + Cu-v}  (<u, v>∈E)

1.循环变量j从1~n-1重复下述操作,执行填表工作

   1.1考察顶点j的所有入边,对于边<i,j>∈E,执行下述操作

       1.1.1cost[j]=min{cost[i]+c[i][j]};

       1.1.2path[j]=使cost[i]+c[i][j]最小的i;

     1.2 j++;

2.输出最短路径长度cost[n-1];

3.循环变量i=path[n-1].循环直到path[i]=0,输出最短路径经过的顶点;

   3.1 输出path[i];

   3.2 i=path[i]

三、例题具体分析

首先求解初始子问题,可直接获得:

d(0, 1)=c01=4(0→1)

d(0, 2)=c02=2(0→2)

d(0, 3)=c03=3(0→3)

再求解下一个阶段的子问题,有:

d(0, 4)=min{d(0, 1)+c14, d(0, 2)+c24}=min{4+9, 2+6}=8(2→4)

d(0, 5)=min{d(0, 1)+c15, d(0, 2)+c25, d(0, 3)+c35}=min{4+8, 2+7, 3+4} 

           =7(3→5)

d(0, 6)=min{d(0, 2)+c26, d(0, 3)+c36}=min{2+8, 3+7}=10(2→6)

再求解下一个阶段的子问题,有:

d(0, 7)=min{d(0, 4)+c47, d(0, 5)+c57, d(0, 6)+c67}=min{8+5, 7+8, 10+6}

           =13(4→7)

d(0, 8)=min{d(0, 4)+c48, d(0, 5)+c58, d(0, 6)+c68}=min{8+6, 7+6, 10+5}

           =13(5→8)

直到最后一个阶段,有:

d(0, 9)=min{d(0, 7)+c79, d(0, 8)+c89}=min{13+7, 13+3}=16(8→9)

再将状态进行回溯,得到最短路径0→3→5→8→9,最短路径长度16。

(附输入)

10 18
0 1 4
0 2 2
0 3 3
1 4 9
1 5 8
2 4 6
2 5 7
2 6 8
3 5 4
3 6 7
4 7 5
4 8 6
5 7 8
5 8 6
6 7 6
6 8 5
7 9 5
8 9 3

四、代码

#include<iostream>
using namespace std;int vnum, arcnum;
int arc[100][100];
const int INT_MAX1 = 999;void printArc()
{cout << "邻接矩阵为:" << endl;for (int i = 0; i < vnum; i++){for (int j = 0; j < vnum; j++){cout << arc[i][j] <<" ";}cout << endl;}cout << endl;
}int main()
{cin >> vnum >> arcnum;int i, j;//初始化邻接矩阵,用999表示没有边for (i = 0; i < vnum; i++){for (j = 0; j < vnum; j++){arc[i][j] = INT_MAX1;}}printArc();//输入各边while (arcnum--){int weight;cin >> i >> j >> weight;arc[i][j] = weight;}printArc();int cost[100] = { 0 };//记录最小的代价int path[100] = { 0 };//记录路径,即经过的顶点//初始化for (i = 1; i < vnum; i++){cost[i] = INT_MAX;path[i] = -1;}cost[0] = 0;path[0] = -1;//开始动态规划,找出最小代价for (j = 1; j < vnum; j++){for (i = j - 1; i >= 0; i--){if (cost[i] + arc[i][j] < cost[j]){cost[j] = cost[i] + arc[i][j];path[j] = i;}}}// 输出路径i = vnum - 1;cout << i;while (path[i] >= 0) { // 前一个点大于0 cout << "<-" << path[i];i = path[i]; // 更新为前一个点 }cout << endl;cout << "最短路径为:" << cost[vnum -1] << endl;system("pause");return 0;
}

 

这篇关于多段图问题-动态规划解法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/472494

相关文章

MySQL 设置AUTO_INCREMENT 无效的问题解决

《MySQL设置AUTO_INCREMENT无效的问题解决》本文主要介绍了MySQL设置AUTO_INCREMENT无效的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录快速设置mysql的auto_increment参数一、修改 AUTO_INCREMENT 的值。

关于跨域无效的问题及解决(java后端方案)

《关于跨域无效的问题及解决(java后端方案)》:本文主要介绍关于跨域无效的问题及解决(java后端方案),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录通用后端跨域方法1、@CrossOrigin 注解2、springboot2.0 实现WebMvcConfig

Go语言中泄漏缓冲区的问题解决

《Go语言中泄漏缓冲区的问题解决》缓冲区是一种常见的数据结构,常被用于在不同的并发单元之间传递数据,然而,若缓冲区使用不当,就可能引发泄漏缓冲区问题,本文就来介绍一下问题的解决,感兴趣的可以了解一下... 目录引言泄漏缓冲区的基本概念代码示例:泄漏缓冲区的产生项目场景:Web 服务器中的请求缓冲场景描述代码

Java死锁问题解决方案及示例详解

《Java死锁问题解决方案及示例详解》死锁是指两个或多个线程因争夺资源而相互等待,导致所有线程都无法继续执行的一种状态,本文给大家详细介绍了Java死锁问题解决方案详解及实践样例,需要的朋友可以参考下... 目录1、简述死锁的四个必要条件:2、死锁示例代码3、如何检测死锁?3.1 使用 jstack3.2

解决JSONField、JsonProperty不生效的问题

《解决JSONField、JsonProperty不生效的问题》:本文主要介绍解决JSONField、JsonProperty不生效的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录jsONField、JsonProperty不生效javascript问题排查总结JSONField

github打不开的问题分析及解决

《github打不开的问题分析及解决》:本文主要介绍github打不开的问题分析及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、找到github.com域名解析的ip地址二、找到github.global.ssl.fastly.net网址解析的ip地址三

MySQL版本问题导致项目无法启动问题的解决方案

《MySQL版本问题导致项目无法启动问题的解决方案》本文记录了一次因MySQL版本不一致导致项目启动失败的经历,详细解析了连接错误的原因,并提供了两种解决方案:调整连接字符串禁用SSL或统一MySQL... 目录本地项目启动报错报错原因:解决方案第一个:第二种:容器启动mysql的坑两种修改时区的方法:本地

springboot加载不到nacos配置中心的配置问题处理

《springboot加载不到nacos配置中心的配置问题处理》:本文主要介绍springboot加载不到nacos配置中心的配置问题处理,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录springboot加载不到nacos配置中心的配置两种可能Spring Boot 版本Nacos

Java调用C#动态库的三种方法详解

《Java调用C#动态库的三种方法详解》在这个多语言编程的时代,Java和C#就像两位才华横溢的舞者,各自在不同的舞台上展现着独特的魅力,然而,当它们携手合作时,又会碰撞出怎样绚丽的火花呢?今天,我们... 目录方法1:C++/CLI搭建桥梁——Java ↔ C# 的“翻译官”步骤1:创建C#类库(.NET

Java中JSON格式反序列化为Map且保证存取顺序一致的问题

《Java中JSON格式反序列化为Map且保证存取顺序一致的问题》:本文主要介绍Java中JSON格式反序列化为Map且保证存取顺序一致的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未... 目录背景问题解决方法总结背景做项目涉及两个微服务之间传数据时,需要提供方将Map类型的数据序列化为co