多段图问题-动态规划解法

2023-12-09 04:36

本文主要是介绍多段图问题-动态规划解法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、多段图问题

问题描述:设图G=(V, E)是一个带权有向图,如果把顶点集合V划分成k个互不相交的子集Vi (2≤k≤n, 1≤i≤k),使得对于E中的任何一条边(u, v),必有u∈Vi,v∈Vi+m (1≤i≤k, 1<i+m≤k),则称图G为多段图,称s∈V1为源点,t∈Vk为终点。多段图的最短路径问题求从源点到终点的最小代价路径。

二、抽象分析

设Cu-v表示多段图的有向边<u, v>上的权值,将从源点s到终点t的最短路径长度记为d(s, t),考虑原问题的部分解d(s, v),显然有下式成立:

d(s, v) =Cs-v (<s, v>∈E)

d(s, v) = min{d(s, u) + Cu-v}  (<u, v>∈E)

1.循环变量j从1~n-1重复下述操作,执行填表工作

   1.1考察顶点j的所有入边,对于边<i,j>∈E,执行下述操作

       1.1.1cost[j]=min{cost[i]+c[i][j]};

       1.1.2path[j]=使cost[i]+c[i][j]最小的i;

     1.2 j++;

2.输出最短路径长度cost[n-1];

3.循环变量i=path[n-1].循环直到path[i]=0,输出最短路径经过的顶点;

   3.1 输出path[i];

   3.2 i=path[i]

三、例题具体分析

首先求解初始子问题,可直接获得:

d(0, 1)=c01=4(0→1)

d(0, 2)=c02=2(0→2)

d(0, 3)=c03=3(0→3)

再求解下一个阶段的子问题,有:

d(0, 4)=min{d(0, 1)+c14, d(0, 2)+c24}=min{4+9, 2+6}=8(2→4)

d(0, 5)=min{d(0, 1)+c15, d(0, 2)+c25, d(0, 3)+c35}=min{4+8, 2+7, 3+4} 

           =7(3→5)

d(0, 6)=min{d(0, 2)+c26, d(0, 3)+c36}=min{2+8, 3+7}=10(2→6)

再求解下一个阶段的子问题,有:

d(0, 7)=min{d(0, 4)+c47, d(0, 5)+c57, d(0, 6)+c67}=min{8+5, 7+8, 10+6}

           =13(4→7)

d(0, 8)=min{d(0, 4)+c48, d(0, 5)+c58, d(0, 6)+c68}=min{8+6, 7+6, 10+5}

           =13(5→8)

直到最后一个阶段,有:

d(0, 9)=min{d(0, 7)+c79, d(0, 8)+c89}=min{13+7, 13+3}=16(8→9)

再将状态进行回溯,得到最短路径0→3→5→8→9,最短路径长度16。

(附输入)

10 18
0 1 4
0 2 2
0 3 3
1 4 9
1 5 8
2 4 6
2 5 7
2 6 8
3 5 4
3 6 7
4 7 5
4 8 6
5 7 8
5 8 6
6 7 6
6 8 5
7 9 5
8 9 3

四、代码

#include<iostream>
using namespace std;int vnum, arcnum;
int arc[100][100];
const int INT_MAX1 = 999;void printArc()
{cout << "邻接矩阵为:" << endl;for (int i = 0; i < vnum; i++){for (int j = 0; j < vnum; j++){cout << arc[i][j] <<" ";}cout << endl;}cout << endl;
}int main()
{cin >> vnum >> arcnum;int i, j;//初始化邻接矩阵,用999表示没有边for (i = 0; i < vnum; i++){for (j = 0; j < vnum; j++){arc[i][j] = INT_MAX1;}}printArc();//输入各边while (arcnum--){int weight;cin >> i >> j >> weight;arc[i][j] = weight;}printArc();int cost[100] = { 0 };//记录最小的代价int path[100] = { 0 };//记录路径,即经过的顶点//初始化for (i = 1; i < vnum; i++){cost[i] = INT_MAX;path[i] = -1;}cost[0] = 0;path[0] = -1;//开始动态规划,找出最小代价for (j = 1; j < vnum; j++){for (i = j - 1; i >= 0; i--){if (cost[i] + arc[i][j] < cost[j]){cost[j] = cost[i] + arc[i][j];path[j] = i;}}}// 输出路径i = vnum - 1;cout << i;while (path[i] >= 0) { // 前一个点大于0 cout << "<-" << path[i];i = path[i]; // 更新为前一个点 }cout << endl;cout << "最短路径为:" << cost[vnum -1] << endl;system("pause");return 0;
}

 

这篇关于多段图问题-动态规划解法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/472494

相关文章

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

解决RocketMQ的幂等性问题

《解决RocketMQ的幂等性问题》重复消费因调用链路长、消息发送超时或消费者故障导致,通过生产者消息查询、Redis缓存及消费者唯一主键可以确保幂等性,避免重复处理,本文主要介绍了解决RocketM... 目录造成重复消费的原因解决方法生产者端消费者端代码实现造成重复消费的原因当系统的调用链路比较长的时

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

kkFileView启动报错:报错2003端口占用的问题及解决

《kkFileView启动报错:报错2003端口占用的问题及解决》kkFileView启动报错因office组件2003端口未关闭,解决:查杀占用端口的进程,终止Java进程,使用shutdown.s... 目录原因解决总结kkFileViewjavascript启动报错启动office组件失败,请检查of

go动态限制并发数量的实现示例

《go动态限制并发数量的实现示例》本文主要介绍了Go并发控制方法,通过带缓冲通道和第三方库实现并发数量限制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录带有缓冲大小的通道使用第三方库其他控制并发的方法因为go从语言层面支持并发,所以面试百分百会问到

SpringBoot 异常处理/自定义格式校验的问题实例详解

《SpringBoot异常处理/自定义格式校验的问题实例详解》文章探讨SpringBoot中自定义注解校验问题,区分参数级与类级约束触发的异常类型,建议通过@RestControllerAdvice... 目录1. 问题简要描述2. 异常触发1) 参数级别约束2) 类级别约束3. 异常处理1) 字段级别约束

Python错误AttributeError: 'NoneType' object has no attribute问题的彻底解决方法

《Python错误AttributeError:NoneTypeobjecthasnoattribute问题的彻底解决方法》在Python项目开发和调试过程中,经常会碰到这样一个异常信息... 目录问题背景与概述错误解读:AttributeError: 'NoneType' object has no at

Spring的RedisTemplate的json反序列泛型丢失问题解决

《Spring的RedisTemplate的json反序列泛型丢失问题解决》本文主要介绍了SpringRedisTemplate中使用JSON序列化时泛型信息丢失的问题及其提出三种解决方案,可以根据性... 目录背景解决方案方案一方案二方案三总结背景在使用RedisTemplate操作redis时我们针对

Kotlin Map映射转换问题小结

《KotlinMap映射转换问题小结》文章介绍了Kotlin集合转换的多种方法,包括map(一对一转换)、mapIndexed(带索引)、mapNotNull(过滤null)、mapKeys/map... 目录Kotlin 集合转换:map、mapIndexed、mapNotNull、mapKeys、map

nginx中端口无权限的问题解决

《nginx中端口无权限的问题解决》当Nginx日志报错bind()to80failed(13:Permissiondenied)时,这通常是由于权限不足导致Nginx无法绑定到80端口,下面就来... 目录一、问题原因分析二、解决方案1. 以 root 权限运行 Nginx(不推荐)2. 为 Nginx