图(有向图)的邻接表表示 C++实现(遍历,拓扑排序,最短路径,最小生成树) Implement of digraph and undigraph using adjacency list

本文主要是介绍图(有向图)的邻接表表示 C++实现(遍历,拓扑排序,最短路径,最小生成树) Implement of digraph and undigraph using adjacency list,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文实现了有向图的邻接表表示,并且实现了从创建到销毁图的各种操作。

以及深度优先遍历,广度优先遍历,Dijkstra最短路径算法,Prim最小生成树算法,拓扑排序算法。

可结合我的另一篇文章(有向图,无向图的邻接矩阵表示)看。

PS: 等有时间了作详细的讲解。


#include <iostream>
#include <climits>
#include <sstream> 
#include <queue>
using namespace std;//const bool UNDIGRAPH = 1;struct EdgeNode//edge,the node of linked list  
{  int vtxNO;  int weight;  EdgeNode *next;  
};  struct VNode//vertex, the head of the linked list  
{  string vertexLabel; EdgeNode *first;  bool visited;//only for DFS,BFS,Dijkstraint distance; //only for Dijkstraint path;//only for Dijkstraint indegree; //only for topological sort
};  struct Graph  
{  VNode *vertexList;//the size of this array is equal to vertexes  int vertexes;  int edges;  
};  void BuildGraph(Graph *&graph, int n)
{if (graph == NULL){graph = new Graph;graph->vertexList = new VNode[n];graph->vertexes = n;graph->edges = 0;for (int i = 0; i < n; i++)  {  stringstream ss;  ss<<"v" << i+1;  ss >> graph->vertexList[i].vertexLabel;  graph->vertexList[i].path = -1;graph->vertexList[i].visited = false;graph->vertexList[i].first = NULL;graph->vertexList[i].indegree = 0;}}
}void MakeEmpty(Graph *&graph)
{if(graph == NULL)return;for (int i = 0; i < graph->vertexes; i++)  {  EdgeNode *pEdge = graph->vertexList[i].first;  while (pEdge!=NULL)  {  EdgeNode *tmp = pEdge;  pEdge = pEdge->next;  delete tmp;  }  }  delete graph;
}void AddEdge(Graph *graph,int v1, int v2, int weight)
{if (graph == NULL) return;if (v1 < 0 || v1 > graph->vertexes-1) return;if (v2 < 0 || v2 > graph->vertexes-1) return;if (v1 == v2) return; //no loop is allowedEdgeNode *p = graph->vertexList[v1].first; if(p == NULL)  {  //can not be p = new EdgeNode;  graph->vertexList[v1].first = new EdgeNode;  graph->vertexList[v1].first->next = NULL;  graph->vertexList[v1].first->vtxNO = v2;  graph->vertexList[v1].first->weight = weight;  graph->edges++;graph->vertexList[v2].indegree++;return;}  while (p->next != NULL)//move to the last node  {  if(p->vtxNO == v2)//already exits. checking all nodes but the last one  return;  p = p->next;  }  if(p->vtxNO == v2)//already exits. checking the first or the last node  return;  EdgeNode *node = new EdgeNode;  node->next = NULL;  node->vtxNO = v2;  node->weight = weight;  p->next = node;//last node's next is the new node  graph->edges++;  graph->vertexList[v2].indegree++;
}void RemoveEdge(Graph *graph, int v1, int v2)
{if (graph == NULL) return;if (v1 < 0 || v1 > graph->vertexes-1) return;if (v2 < 0 || v2 > graph->vertexes-1) return;if (v1 == v2) return; //no loop is allowedEdgeNode *p = graph->vertexList[v1].first;  if(p == NULL)//not found  return;  if(p->vtxNO == v2)//found,delete the first node  {  EdgeNode *tmp = p;//first  graph->vertexList[v1].first = p->next; //can not be p = p->next  delete tmp;  graph->edges--;  graph->vertexList[v2].indegree--;return;  }  while(p->next != NULL)  {  if(p->next->vtxNO == v2)//found  {  EdgeNode *tmp = p->next;  p = p->next->next;  delete tmp;  graph->edges--;  graph->vertexList[v2].indegree--;return;  }  p = p->next;  }  
}int GetIndegree(Graph *graph, int v)
{if(graph == NULL) return -1;if(v < 0 || v > graph->vertexes -1) return -2;int degree = 0;  for (int i = 0; i < graph->vertexes; i++)  {  EdgeNode *p = graph->vertexList[i].first;  while (p != NULL)  {  if(p->vtxNO == v)  {  degree++;  break;  }  p = p->next;  }  }  return degree;  
}int GetOutdegree(Graph *graph, int v)
{if(graph == NULL) return -1;if(v < 0 || v > graph->vertexes -1) return -2;int degree = 0;  EdgeNode *p = graph->vertexList[v].first;  while(p != NULL)  {  p = p->next;  degree++;  }  return degree; 
}int GetDegree(Graph *graph, int v)
{if(graph == NULL) return -1;if(v < 0 || v > graph->vertexes -1) return -2;return GetIndegree(graph,v) + GetOutdegree(graph,v);
}void PrintGraph(Graph *graph)
{if(graph == NULL)return;cout << "Vertex: " << graph->vertexes <<"\n";cout << "Edge: " << graph->edges << "\n";for (int i = 0; i < graph->vertexes; i++)  {  cout << i+1 << ": " << graph->vertexList[i].vertexLabel<<"->";  EdgeNode *p = graph->vertexList[i].first;  while (p != NULL)  {  cout << graph->vertexList[p->vtxNO].vertexLabel << "(" << p->weight <<")->";  p = p->next;  }  cout << "\n";  }  cout << "\n";
}//depth first search (use stack or recursion)
//DFS is similar to preorder traversal of trees
void DFS(Graph *graph, int i)
{if (!graph->vertexList[i].visited){cout << graph->vertexList[i].vertexLabel << " ";graph->vertexList[i].visited = true;}EdgeNode *p = graph->vertexList[i].first;while (p != NULL){if(!graph->vertexList[p->vtxNO].visited)//notice!DFS(graph, p->vtxNO);p = p->next;}
}void BeginDFS(Graph *graph)
{if(graph == NULL) return;cout << "DFS\n";for (int i = 0; i < graph->vertexes; i++)graph->vertexList[i].visited = false;for (int i = 0; i < graph->vertexes; i++)DFS(graph,i);
}
//breadth first search(use queue)
//BFS is similar to leverorder traversal of trees
//all of the vertexes will be searched once no matter how the digraph is constructed
void BFS(Graph *graph)
{if(graph == NULL)return;cout << "BFS\n";for (int i = 0; i < graph->vertexes; i++)graph->vertexList[i].visited = false;queue<int> QVertex;for (int i = 0; i < graph->vertexes; i++){if (!graph->vertexList[i].visited){QVertex.push(i);cout << graph->vertexList[i].vertexLabel << " ";graph->vertexList[i].visited = true;}while(!QVertex.empty()){int vtxNO = QVertex.front();QVertex.pop();EdgeNode *p = graph->vertexList[vtxNO].first;while(p != NULL){if (!graph->vertexList[p->vtxNO].visited){cout << graph->vertexList[p->vtxNO].vertexLabel << " ";graph->vertexList[p->vtxNO].visited = true;QVertex.push(p->vtxNO);}p = p->next;}}}cout << "\n";
}void TopologicalSort(Graph *graph)
{//if(UNDIGRAPH) return;if(graph == NULL) return;cout << "TopologicalSort"<<"\n";int counter = 0;queue <int> qVertex;for (int i = 0; i < graph->vertexes; i++){if(GetIndegree(graph,i) == 0)qVertex.push(i);}while (!qVertex.empty()){int vtxNO = qVertex.front();counter++;cout << graph->vertexList[vtxNO].vertexLabel;if(counter != graph->vertexes)cout << " > ";qVertex.pop();EdgeNode *p = graph->vertexList[vtxNO].first;while(p != NULL){int vtxNo = p->vtxNO;/*EdgeNode *tmp = p;p = p->next;delete tmp;tmp = NULL;*/// although tmp is NULL,but p is not NULL,and the data pointed by p has been deletedp = p->next;//if (GetIndegree(graph,vtxNo) == 0)//error,in while(p != NULL),so use a variable indegree insteadif (--graph->vertexList[vtxNo].indegree == 0)qVertex.push(vtxNo);}}cout << "\n";
}void Dijkstra(Graph *graph, int v)
{if(graph == NULL) return;if(v < 0 || v > graph->vertexes-1) return;for (int i = 0; i < graph->vertexes; i++){graph->vertexList[i].visited = false;graph->vertexList[i].distance = INT_MAX;//can delete this line,as initialized in BuildGraphgraph->vertexList[i].path = -1;}graph->vertexList[v].distance = 0;//the rest are all INT_MAXwhile(1){int minDisInx = -1;int minDis = INT_MAX;for (int i = 0; i < graph->vertexes; i++){if(!graph->vertexList[i].visited){if(graph->vertexList[i].distance < minDis){minDis = graph->vertexList[i].distance;minDisInx = i;}}}if(minDisInx == -1)//all visitedbreak;graph->vertexList[minDisInx].visited = true;EdgeNode *p = graph->vertexList[minDisInx].first;while(p != NULL){int vtxNO = p->vtxNO;if(!graph->vertexList[vtxNO].visited){if (graph->vertexList[minDisInx].distance + p->weight < graph->vertexList[vtxNO].distance){graph->vertexList[vtxNO].distance = graph->vertexList[minDisInx].distance + p->weight;graph->vertexList[vtxNO].path = minDisInx;cout << graph->vertexList[vtxNO].vertexLabel << " Updated to " << graph->vertexList[vtxNO].distance << "\n";}}p = p->next;}}cout << "Vertex  Visited  Distance  Path\n";for (int i = 0; i < graph->vertexes; i++){cout << graph->vertexList[i].vertexLabel<< "	";cout << graph->vertexList[i].visited<< "	";cout << graph->vertexList[i].distance<< "	";if(graph->vertexList[i].path == -1)cout << "NONE\n";elsecout << graph->vertexList[graph->vertexList[i].path].vertexLabel << "\n";}
}//almost for undigraph
void Prim(Graph *graph, int v)
{if(graph == NULL) return;if(v < 0 || v > graph->vertexes-1) return;for (int i = 0; i < graph->vertexes; i++){graph->vertexList[i].visited = false;graph->vertexList[i].distance = INT_MAX;//can delete this line,as initialized in BuildGraphgraph->vertexList[i].path = -1;}graph->vertexList[v].distance = 0;//the rest are all INT_MAXwhile(1){int minDisInx = -1;int minDis = INT_MAX;for (int i = 0; i < graph->vertexes; i++){if(!graph->vertexList[i].visited){if(graph->vertexList[i].distance < minDis){minDis = graph->vertexList[i].distance;minDisInx = i;}}}if(minDisInx == -1)//all visitedbreak;graph->vertexList[minDisInx].visited = true;EdgeNode *p = graph->vertexList[minDisInx].first;while(p != NULL){int vtxNO = p->vtxNO;if(!graph->vertexList[vtxNO].visited){if (p->weight < graph->vertexList[vtxNO].distance){graph->vertexList[vtxNO].distance = p->weight;graph->vertexList[vtxNO].path = minDisInx;cout << graph->vertexList[vtxNO].vertexLabel << " Updated to " << graph->vertexList[vtxNO].distance << "\n";}}p = p->next;}}cout << "Vertex  Visited  Distance  Path\n";for (int i = 0; i < graph->vertexes; i++){cout << graph->vertexList[i].vertexLabel<< "	";cout << graph->vertexList[i].visited<< "	";cout << graph->vertexList[i].distance<< "	";if(graph->vertexList[i].path == -1)cout << "NONE\n";elsecout << graph->vertexList[graph->vertexList[i].path].vertexLabel << "\n";}}
int main()
{Graph *graph = NULL;BuildGraph(graph,7);PrintGraph(graph);//for simple test, 0 indexed/*AddEdge(graph,0,1,1);AddEdge(graph,0,2,1);AddEdge(graph,1,3,1);*///for TopologicalSort//0 indexedAddEdge(graph,0,1,1);AddEdge(graph,0,2,1);AddEdge(graph,0,3,1);AddEdge(graph,1,3,1);AddEdge(graph,1,4,1);AddEdge(graph,2,5,1);AddEdge(graph,3,2,1);AddEdge(graph,3,5,1);AddEdge(graph,3,6,1);AddEdge(graph,4,3,1);AddEdge(graph,4,6,1);AddEdge(graph,6,5,1);PrintGraph(graph);RemoveEdge(graph,6,5);AddEdge(graph,6,5,1);//for Dijkstra(shortest path),Prim(minimum spanning tree)//0 indexed/*AddEdge(graph,0,1,2);  AddEdge(graph,0,3,1);  AddEdge(graph,1,3,3);  AddEdge(graph,1,4,10);  AddEdge(graph,2,0,4);  AddEdge(graph,2,5,5);  AddEdge(graph,3,2,2);AddEdge(graph,3,4,2);AddEdge(graph,3,5,8);  AddEdge(graph,3,6,4);  AddEdge(graph,4,6,6);  AddEdge(graph,6,5,1);*/PrintGraph(graph);BeginDFS(graph);cout << "\n";BFS(graph);for (int i = 0; i < graph->vertexes; i++){cout << "\n";Dijkstra(graph,i);}Prim(graph,0);TopologicalSort(graph);MakeEmpty(graph);return 0;
}


这篇关于图(有向图)的邻接表表示 C++实现(遍历,拓扑排序,最短路径,最小生成树) Implement of digraph and undigraph using adjacency list的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/472262

相关文章

利用c++判断水仙花数并输出示例代码

《利用c++判断水仙花数并输出示例代码》水仙花数是指一个三位数,其各位数字的立方和恰好等于该数本身,:本文主要介绍利用c++判断水仙花数并输出的相关资料,文中通过代码介绍的非常详细,需要的朋友可以... 以下是使用C++实现的相同逻辑代码:#include <IOStream>#include <vec

基于C++的UDP网络通信系统设计与实现详解

《基于C++的UDP网络通信系统设计与实现详解》在网络编程领域,UDP作为一种无连接的传输层协议,以其高效、低延迟的特性在实时性要求高的应用场景中占据重要地位,下面我们就来看看如何从零开始构建一个完整... 目录前言一、UDP服务器UdpServer.hpp1.1 基本框架设计1.2 初始化函数Init详解

Java中Map的五种遍历方式实现与对比

《Java中Map的五种遍历方式实现与对比》其实Map遍历藏着多种玩法,有的优雅简洁,有的性能拉满,今天咱们盘一盘这些进阶偏基础的遍历方式,告别重复又臃肿的代码,感兴趣的小伙伴可以了解下... 目录一、先搞懂:Map遍历的核心目标二、几种遍历方式的对比1. 传统EntrySet遍历(最通用)2. Lambd

springboot+redis实现订单过期(超时取消)功能的方法详解

《springboot+redis实现订单过期(超时取消)功能的方法详解》在SpringBoot中使用Redis实现订单过期(超时取消)功能,有多种成熟方案,本文为大家整理了几个详细方法,文中的示例代... 目录一、Redis键过期回调方案(推荐)1. 配置Redis监听器2. 监听键过期事件3. Redi

SpringBoot全局异常拦截与自定义错误页面实现过程解读

《SpringBoot全局异常拦截与自定义错误页面实现过程解读》本文介绍了SpringBoot中全局异常拦截与自定义错误页面的实现方法,包括异常的分类、SpringBoot默认异常处理机制、全局异常拦... 目录一、引言二、Spring Boot异常处理基础2.1 异常的分类2.2 Spring Boot默

基于SpringBoot实现分布式锁的三种方法

《基于SpringBoot实现分布式锁的三种方法》这篇文章主要为大家详细介绍了基于SpringBoot实现分布式锁的三种方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、基于Redis原生命令实现分布式锁1. 基础版Redis分布式锁2. 可重入锁实现二、使用Redisso

SpringBoo WebFlux+MongoDB实现非阻塞API过程

《SpringBooWebFlux+MongoDB实现非阻塞API过程》本文介绍了如何使用SpringBootWebFlux和MongoDB实现非阻塞API,通过响应式编程提高系统的吞吐量和响应性能... 目录一、引言二、响应式编程基础2.1 响应式编程概念2.2 响应式编程的优势2.3 响应式编程相关技术

C#实现将XML数据自动化地写入Excel文件

《C#实现将XML数据自动化地写入Excel文件》在现代企业级应用中,数据处理与报表生成是核心环节,本文将深入探讨如何利用C#和一款优秀的库,将XML数据自动化地写入Excel文件,有需要的小伙伴可以... 目录理解XML数据结构与Excel的对应关系引入高效工具:使用Spire.XLS for .NETC

C++ 右值引用(rvalue references)与移动语义(move semantics)深度解析

《C++右值引用(rvaluereferences)与移动语义(movesemantics)深度解析》文章主要介绍了C++右值引用和移动语义的设计动机、基本概念、实现方式以及在实际编程中的应用,... 目录一、右值引用(rvalue references)与移动语义(move semantics)设计动机1

Nginx更新SSL证书的实现步骤

《Nginx更新SSL证书的实现步骤》本文主要介绍了Nginx更新SSL证书的实现步骤,包括下载新证书、备份旧证书、配置新证书、验证配置及遇到问题时的解决方法,感兴趣的了解一下... 目录1 下载最新的SSL证书文件2 备份旧的SSL证书文件3 配置新证书4 验证配置5 遇到的http://www.cppc