图(有向图)的邻接表表示 C++实现(遍历,拓扑排序,最短路径,最小生成树) Implement of digraph and undigraph using adjacency list

本文主要是介绍图(有向图)的邻接表表示 C++实现(遍历,拓扑排序,最短路径,最小生成树) Implement of digraph and undigraph using adjacency list,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文实现了有向图的邻接表表示,并且实现了从创建到销毁图的各种操作。

以及深度优先遍历,广度优先遍历,Dijkstra最短路径算法,Prim最小生成树算法,拓扑排序算法。

可结合我的另一篇文章(有向图,无向图的邻接矩阵表示)看。

PS: 等有时间了作详细的讲解。


#include <iostream>
#include <climits>
#include <sstream> 
#include <queue>
using namespace std;//const bool UNDIGRAPH = 1;struct EdgeNode//edge,the node of linked list  
{  int vtxNO;  int weight;  EdgeNode *next;  
};  struct VNode//vertex, the head of the linked list  
{  string vertexLabel; EdgeNode *first;  bool visited;//only for DFS,BFS,Dijkstraint distance; //only for Dijkstraint path;//only for Dijkstraint indegree; //only for topological sort
};  struct Graph  
{  VNode *vertexList;//the size of this array is equal to vertexes  int vertexes;  int edges;  
};  void BuildGraph(Graph *&graph, int n)
{if (graph == NULL){graph = new Graph;graph->vertexList = new VNode[n];graph->vertexes = n;graph->edges = 0;for (int i = 0; i < n; i++)  {  stringstream ss;  ss<<"v" << i+1;  ss >> graph->vertexList[i].vertexLabel;  graph->vertexList[i].path = -1;graph->vertexList[i].visited = false;graph->vertexList[i].first = NULL;graph->vertexList[i].indegree = 0;}}
}void MakeEmpty(Graph *&graph)
{if(graph == NULL)return;for (int i = 0; i < graph->vertexes; i++)  {  EdgeNode *pEdge = graph->vertexList[i].first;  while (pEdge!=NULL)  {  EdgeNode *tmp = pEdge;  pEdge = pEdge->next;  delete tmp;  }  }  delete graph;
}void AddEdge(Graph *graph,int v1, int v2, int weight)
{if (graph == NULL) return;if (v1 < 0 || v1 > graph->vertexes-1) return;if (v2 < 0 || v2 > graph->vertexes-1) return;if (v1 == v2) return; //no loop is allowedEdgeNode *p = graph->vertexList[v1].first; if(p == NULL)  {  //can not be p = new EdgeNode;  graph->vertexList[v1].first = new EdgeNode;  graph->vertexList[v1].first->next = NULL;  graph->vertexList[v1].first->vtxNO = v2;  graph->vertexList[v1].first->weight = weight;  graph->edges++;graph->vertexList[v2].indegree++;return;}  while (p->next != NULL)//move to the last node  {  if(p->vtxNO == v2)//already exits. checking all nodes but the last one  return;  p = p->next;  }  if(p->vtxNO == v2)//already exits. checking the first or the last node  return;  EdgeNode *node = new EdgeNode;  node->next = NULL;  node->vtxNO = v2;  node->weight = weight;  p->next = node;//last node's next is the new node  graph->edges++;  graph->vertexList[v2].indegree++;
}void RemoveEdge(Graph *graph, int v1, int v2)
{if (graph == NULL) return;if (v1 < 0 || v1 > graph->vertexes-1) return;if (v2 < 0 || v2 > graph->vertexes-1) return;if (v1 == v2) return; //no loop is allowedEdgeNode *p = graph->vertexList[v1].first;  if(p == NULL)//not found  return;  if(p->vtxNO == v2)//found,delete the first node  {  EdgeNode *tmp = p;//first  graph->vertexList[v1].first = p->next; //can not be p = p->next  delete tmp;  graph->edges--;  graph->vertexList[v2].indegree--;return;  }  while(p->next != NULL)  {  if(p->next->vtxNO == v2)//found  {  EdgeNode *tmp = p->next;  p = p->next->next;  delete tmp;  graph->edges--;  graph->vertexList[v2].indegree--;return;  }  p = p->next;  }  
}int GetIndegree(Graph *graph, int v)
{if(graph == NULL) return -1;if(v < 0 || v > graph->vertexes -1) return -2;int degree = 0;  for (int i = 0; i < graph->vertexes; i++)  {  EdgeNode *p = graph->vertexList[i].first;  while (p != NULL)  {  if(p->vtxNO == v)  {  degree++;  break;  }  p = p->next;  }  }  return degree;  
}int GetOutdegree(Graph *graph, int v)
{if(graph == NULL) return -1;if(v < 0 || v > graph->vertexes -1) return -2;int degree = 0;  EdgeNode *p = graph->vertexList[v].first;  while(p != NULL)  {  p = p->next;  degree++;  }  return degree; 
}int GetDegree(Graph *graph, int v)
{if(graph == NULL) return -1;if(v < 0 || v > graph->vertexes -1) return -2;return GetIndegree(graph,v) + GetOutdegree(graph,v);
}void PrintGraph(Graph *graph)
{if(graph == NULL)return;cout << "Vertex: " << graph->vertexes <<"\n";cout << "Edge: " << graph->edges << "\n";for (int i = 0; i < graph->vertexes; i++)  {  cout << i+1 << ": " << graph->vertexList[i].vertexLabel<<"->";  EdgeNode *p = graph->vertexList[i].first;  while (p != NULL)  {  cout << graph->vertexList[p->vtxNO].vertexLabel << "(" << p->weight <<")->";  p = p->next;  }  cout << "\n";  }  cout << "\n";
}//depth first search (use stack or recursion)
//DFS is similar to preorder traversal of trees
void DFS(Graph *graph, int i)
{if (!graph->vertexList[i].visited){cout << graph->vertexList[i].vertexLabel << " ";graph->vertexList[i].visited = true;}EdgeNode *p = graph->vertexList[i].first;while (p != NULL){if(!graph->vertexList[p->vtxNO].visited)//notice!DFS(graph, p->vtxNO);p = p->next;}
}void BeginDFS(Graph *graph)
{if(graph == NULL) return;cout << "DFS\n";for (int i = 0; i < graph->vertexes; i++)graph->vertexList[i].visited = false;for (int i = 0; i < graph->vertexes; i++)DFS(graph,i);
}
//breadth first search(use queue)
//BFS is similar to leverorder traversal of trees
//all of the vertexes will be searched once no matter how the digraph is constructed
void BFS(Graph *graph)
{if(graph == NULL)return;cout << "BFS\n";for (int i = 0; i < graph->vertexes; i++)graph->vertexList[i].visited = false;queue<int> QVertex;for (int i = 0; i < graph->vertexes; i++){if (!graph->vertexList[i].visited){QVertex.push(i);cout << graph->vertexList[i].vertexLabel << " ";graph->vertexList[i].visited = true;}while(!QVertex.empty()){int vtxNO = QVertex.front();QVertex.pop();EdgeNode *p = graph->vertexList[vtxNO].first;while(p != NULL){if (!graph->vertexList[p->vtxNO].visited){cout << graph->vertexList[p->vtxNO].vertexLabel << " ";graph->vertexList[p->vtxNO].visited = true;QVertex.push(p->vtxNO);}p = p->next;}}}cout << "\n";
}void TopologicalSort(Graph *graph)
{//if(UNDIGRAPH) return;if(graph == NULL) return;cout << "TopologicalSort"<<"\n";int counter = 0;queue <int> qVertex;for (int i = 0; i < graph->vertexes; i++){if(GetIndegree(graph,i) == 0)qVertex.push(i);}while (!qVertex.empty()){int vtxNO = qVertex.front();counter++;cout << graph->vertexList[vtxNO].vertexLabel;if(counter != graph->vertexes)cout << " > ";qVertex.pop();EdgeNode *p = graph->vertexList[vtxNO].first;while(p != NULL){int vtxNo = p->vtxNO;/*EdgeNode *tmp = p;p = p->next;delete tmp;tmp = NULL;*/// although tmp is NULL,but p is not NULL,and the data pointed by p has been deletedp = p->next;//if (GetIndegree(graph,vtxNo) == 0)//error,in while(p != NULL),so use a variable indegree insteadif (--graph->vertexList[vtxNo].indegree == 0)qVertex.push(vtxNo);}}cout << "\n";
}void Dijkstra(Graph *graph, int v)
{if(graph == NULL) return;if(v < 0 || v > graph->vertexes-1) return;for (int i = 0; i < graph->vertexes; i++){graph->vertexList[i].visited = false;graph->vertexList[i].distance = INT_MAX;//can delete this line,as initialized in BuildGraphgraph->vertexList[i].path = -1;}graph->vertexList[v].distance = 0;//the rest are all INT_MAXwhile(1){int minDisInx = -1;int minDis = INT_MAX;for (int i = 0; i < graph->vertexes; i++){if(!graph->vertexList[i].visited){if(graph->vertexList[i].distance < minDis){minDis = graph->vertexList[i].distance;minDisInx = i;}}}if(minDisInx == -1)//all visitedbreak;graph->vertexList[minDisInx].visited = true;EdgeNode *p = graph->vertexList[minDisInx].first;while(p != NULL){int vtxNO = p->vtxNO;if(!graph->vertexList[vtxNO].visited){if (graph->vertexList[minDisInx].distance + p->weight < graph->vertexList[vtxNO].distance){graph->vertexList[vtxNO].distance = graph->vertexList[minDisInx].distance + p->weight;graph->vertexList[vtxNO].path = minDisInx;cout << graph->vertexList[vtxNO].vertexLabel << " Updated to " << graph->vertexList[vtxNO].distance << "\n";}}p = p->next;}}cout << "Vertex  Visited  Distance  Path\n";for (int i = 0; i < graph->vertexes; i++){cout << graph->vertexList[i].vertexLabel<< "	";cout << graph->vertexList[i].visited<< "	";cout << graph->vertexList[i].distance<< "	";if(graph->vertexList[i].path == -1)cout << "NONE\n";elsecout << graph->vertexList[graph->vertexList[i].path].vertexLabel << "\n";}
}//almost for undigraph
void Prim(Graph *graph, int v)
{if(graph == NULL) return;if(v < 0 || v > graph->vertexes-1) return;for (int i = 0; i < graph->vertexes; i++){graph->vertexList[i].visited = false;graph->vertexList[i].distance = INT_MAX;//can delete this line,as initialized in BuildGraphgraph->vertexList[i].path = -1;}graph->vertexList[v].distance = 0;//the rest are all INT_MAXwhile(1){int minDisInx = -1;int minDis = INT_MAX;for (int i = 0; i < graph->vertexes; i++){if(!graph->vertexList[i].visited){if(graph->vertexList[i].distance < minDis){minDis = graph->vertexList[i].distance;minDisInx = i;}}}if(minDisInx == -1)//all visitedbreak;graph->vertexList[minDisInx].visited = true;EdgeNode *p = graph->vertexList[minDisInx].first;while(p != NULL){int vtxNO = p->vtxNO;if(!graph->vertexList[vtxNO].visited){if (p->weight < graph->vertexList[vtxNO].distance){graph->vertexList[vtxNO].distance = p->weight;graph->vertexList[vtxNO].path = minDisInx;cout << graph->vertexList[vtxNO].vertexLabel << " Updated to " << graph->vertexList[vtxNO].distance << "\n";}}p = p->next;}}cout << "Vertex  Visited  Distance  Path\n";for (int i = 0; i < graph->vertexes; i++){cout << graph->vertexList[i].vertexLabel<< "	";cout << graph->vertexList[i].visited<< "	";cout << graph->vertexList[i].distance<< "	";if(graph->vertexList[i].path == -1)cout << "NONE\n";elsecout << graph->vertexList[graph->vertexList[i].path].vertexLabel << "\n";}}
int main()
{Graph *graph = NULL;BuildGraph(graph,7);PrintGraph(graph);//for simple test, 0 indexed/*AddEdge(graph,0,1,1);AddEdge(graph,0,2,1);AddEdge(graph,1,3,1);*///for TopologicalSort//0 indexedAddEdge(graph,0,1,1);AddEdge(graph,0,2,1);AddEdge(graph,0,3,1);AddEdge(graph,1,3,1);AddEdge(graph,1,4,1);AddEdge(graph,2,5,1);AddEdge(graph,3,2,1);AddEdge(graph,3,5,1);AddEdge(graph,3,6,1);AddEdge(graph,4,3,1);AddEdge(graph,4,6,1);AddEdge(graph,6,5,1);PrintGraph(graph);RemoveEdge(graph,6,5);AddEdge(graph,6,5,1);//for Dijkstra(shortest path),Prim(minimum spanning tree)//0 indexed/*AddEdge(graph,0,1,2);  AddEdge(graph,0,3,1);  AddEdge(graph,1,3,3);  AddEdge(graph,1,4,10);  AddEdge(graph,2,0,4);  AddEdge(graph,2,5,5);  AddEdge(graph,3,2,2);AddEdge(graph,3,4,2);AddEdge(graph,3,5,8);  AddEdge(graph,3,6,4);  AddEdge(graph,4,6,6);  AddEdge(graph,6,5,1);*/PrintGraph(graph);BeginDFS(graph);cout << "\n";BFS(graph);for (int i = 0; i < graph->vertexes; i++){cout << "\n";Dijkstra(graph,i);}Prim(graph,0);TopologicalSort(graph);MakeEmpty(graph);return 0;
}


这篇关于图(有向图)的邻接表表示 C++实现(遍历,拓扑排序,最短路径,最小生成树) Implement of digraph and undigraph using adjacency list的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/472262

相关文章

C#借助Spire.XLS for .NET实现在Excel中添加文档属性

《C#借助Spire.XLSfor.NET实现在Excel中添加文档属性》在日常的数据处理和项目管理中,Excel文档扮演着举足轻重的角色,本文将深入探讨如何在C#中借助强大的第三方库Spire.... 目录为什么需要程序化添加Excel文档属性使用Spire.XLS for .NET库实现文档属性管理Sp

C++ move 的作用详解及陷阱最佳实践

《C++move的作用详解及陷阱最佳实践》文章详细介绍了C++中的`std::move`函数的作用,包括为什么需要它、它的本质、典型使用场景、以及一些常见陷阱和最佳实践,感兴趣的朋友跟随小编一起看... 目录C++ move 的作用详解一、一句话总结二、为什么需要 move?C++98/03 的痛点⚡C++

Python+FFmpeg实现视频自动化处理的完整指南

《Python+FFmpeg实现视频自动化处理的完整指南》本文总结了一套在Python中使用subprocess.run调用FFmpeg进行视频自动化处理的解决方案,涵盖了跨平台硬件加速、中间素材处理... 目录一、 跨平台硬件加速:统一接口设计1. 核心映射逻辑2. python 实现代码二、 中间素材处

Java数组动态扩容的实现示例

《Java数组动态扩容的实现示例》本文主要介绍了Java数组动态扩容的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1 问题2 方法3 结语1 问题实现动态的给数组添加元素效果,实现对数组扩容,原始数组使用静态分配

Java中ArrayList与顺序表示例详解

《Java中ArrayList与顺序表示例详解》顺序表是在计算机内存中以数组的形式保存的线性表,是指用一组地址连续的存储单元依次存储数据元素的线性结构,:本文主要介绍Java中ArrayList与... 目录前言一、Java集合框架核心接口与分类ArrayList二、顺序表数据结构中的顺序表三、常用代码手动

Python实现快速扫描目标主机的开放端口和服务

《Python实现快速扫描目标主机的开放端口和服务》这篇文章主要为大家详细介绍了如何使用Python编写一个功能强大的端口扫描器脚本,实现快速扫描目标主机的开放端口和服务,感兴趣的小伙伴可以了解下... 目录功能介绍场景应用1. 网络安全审计2. 系统管理维护3. 网络故障排查4. 合规性检查报错处理1.

Python轻松实现Word到Markdown的转换

《Python轻松实现Word到Markdown的转换》在文档管理、内容发布等场景中,将Word转换为Markdown格式是常见需求,本文将介绍如何使用FreeSpire.DocforPython实现... 目录一、工具简介二、核心转换实现1. 基础单文件转换2. 批量转换Word文件三、工具特性分析优点局

Springboot3统一返回类设计全过程(从问题到实现)

《Springboot3统一返回类设计全过程(从问题到实现)》文章介绍了如何在SpringBoot3中设计一个统一返回类,以实现前后端接口返回格式的一致性,该类包含状态码、描述信息、业务数据和时间戳,... 目录Spring Boot 3 统一返回类设计:从问题到实现一、核心需求:统一返回类要解决什么问题?

详解C++ 存储二进制数据容器的几种方法

《详解C++存储二进制数据容器的几种方法》本文主要介绍了详解C++存储二进制数据容器,包括std::vector、std::array、std::string、std::bitset和std::ve... 目录1.std::vector<uint8_t>(最常用)特点:适用场景:示例:2.std::arra

C++构造函数中explicit详解

《C++构造函数中explicit详解》explicit关键字用于修饰单参数构造函数或可以看作单参数的构造函数,阻止编译器进行隐式类型转换或拷贝初始化,本文就来介绍explicit的使用,感兴趣的可以... 目录1. 什么是explicit2. 隐式转换的问题3.explicit的使用示例基本用法多参数构造