图(有向图)的邻接表表示 C++实现(遍历,拓扑排序,最短路径,最小生成树) Implement of digraph and undigraph using adjacency list

本文主要是介绍图(有向图)的邻接表表示 C++实现(遍历,拓扑排序,最短路径,最小生成树) Implement of digraph and undigraph using adjacency list,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文实现了有向图的邻接表表示,并且实现了从创建到销毁图的各种操作。

以及深度优先遍历,广度优先遍历,Dijkstra最短路径算法,Prim最小生成树算法,拓扑排序算法。

可结合我的另一篇文章(有向图,无向图的邻接矩阵表示)看。

PS: 等有时间了作详细的讲解。


#include <iostream>
#include <climits>
#include <sstream> 
#include <queue>
using namespace std;//const bool UNDIGRAPH = 1;struct EdgeNode//edge,the node of linked list  
{  int vtxNO;  int weight;  EdgeNode *next;  
};  struct VNode//vertex, the head of the linked list  
{  string vertexLabel; EdgeNode *first;  bool visited;//only for DFS,BFS,Dijkstraint distance; //only for Dijkstraint path;//only for Dijkstraint indegree; //only for topological sort
};  struct Graph  
{  VNode *vertexList;//the size of this array is equal to vertexes  int vertexes;  int edges;  
};  void BuildGraph(Graph *&graph, int n)
{if (graph == NULL){graph = new Graph;graph->vertexList = new VNode[n];graph->vertexes = n;graph->edges = 0;for (int i = 0; i < n; i++)  {  stringstream ss;  ss<<"v" << i+1;  ss >> graph->vertexList[i].vertexLabel;  graph->vertexList[i].path = -1;graph->vertexList[i].visited = false;graph->vertexList[i].first = NULL;graph->vertexList[i].indegree = 0;}}
}void MakeEmpty(Graph *&graph)
{if(graph == NULL)return;for (int i = 0; i < graph->vertexes; i++)  {  EdgeNode *pEdge = graph->vertexList[i].first;  while (pEdge!=NULL)  {  EdgeNode *tmp = pEdge;  pEdge = pEdge->next;  delete tmp;  }  }  delete graph;
}void AddEdge(Graph *graph,int v1, int v2, int weight)
{if (graph == NULL) return;if (v1 < 0 || v1 > graph->vertexes-1) return;if (v2 < 0 || v2 > graph->vertexes-1) return;if (v1 == v2) return; //no loop is allowedEdgeNode *p = graph->vertexList[v1].first; if(p == NULL)  {  //can not be p = new EdgeNode;  graph->vertexList[v1].first = new EdgeNode;  graph->vertexList[v1].first->next = NULL;  graph->vertexList[v1].first->vtxNO = v2;  graph->vertexList[v1].first->weight = weight;  graph->edges++;graph->vertexList[v2].indegree++;return;}  while (p->next != NULL)//move to the last node  {  if(p->vtxNO == v2)//already exits. checking all nodes but the last one  return;  p = p->next;  }  if(p->vtxNO == v2)//already exits. checking the first or the last node  return;  EdgeNode *node = new EdgeNode;  node->next = NULL;  node->vtxNO = v2;  node->weight = weight;  p->next = node;//last node's next is the new node  graph->edges++;  graph->vertexList[v2].indegree++;
}void RemoveEdge(Graph *graph, int v1, int v2)
{if (graph == NULL) return;if (v1 < 0 || v1 > graph->vertexes-1) return;if (v2 < 0 || v2 > graph->vertexes-1) return;if (v1 == v2) return; //no loop is allowedEdgeNode *p = graph->vertexList[v1].first;  if(p == NULL)//not found  return;  if(p->vtxNO == v2)//found,delete the first node  {  EdgeNode *tmp = p;//first  graph->vertexList[v1].first = p->next; //can not be p = p->next  delete tmp;  graph->edges--;  graph->vertexList[v2].indegree--;return;  }  while(p->next != NULL)  {  if(p->next->vtxNO == v2)//found  {  EdgeNode *tmp = p->next;  p = p->next->next;  delete tmp;  graph->edges--;  graph->vertexList[v2].indegree--;return;  }  p = p->next;  }  
}int GetIndegree(Graph *graph, int v)
{if(graph == NULL) return -1;if(v < 0 || v > graph->vertexes -1) return -2;int degree = 0;  for (int i = 0; i < graph->vertexes; i++)  {  EdgeNode *p = graph->vertexList[i].first;  while (p != NULL)  {  if(p->vtxNO == v)  {  degree++;  break;  }  p = p->next;  }  }  return degree;  
}int GetOutdegree(Graph *graph, int v)
{if(graph == NULL) return -1;if(v < 0 || v > graph->vertexes -1) return -2;int degree = 0;  EdgeNode *p = graph->vertexList[v].first;  while(p != NULL)  {  p = p->next;  degree++;  }  return degree; 
}int GetDegree(Graph *graph, int v)
{if(graph == NULL) return -1;if(v < 0 || v > graph->vertexes -1) return -2;return GetIndegree(graph,v) + GetOutdegree(graph,v);
}void PrintGraph(Graph *graph)
{if(graph == NULL)return;cout << "Vertex: " << graph->vertexes <<"\n";cout << "Edge: " << graph->edges << "\n";for (int i = 0; i < graph->vertexes; i++)  {  cout << i+1 << ": " << graph->vertexList[i].vertexLabel<<"->";  EdgeNode *p = graph->vertexList[i].first;  while (p != NULL)  {  cout << graph->vertexList[p->vtxNO].vertexLabel << "(" << p->weight <<")->";  p = p->next;  }  cout << "\n";  }  cout << "\n";
}//depth first search (use stack or recursion)
//DFS is similar to preorder traversal of trees
void DFS(Graph *graph, int i)
{if (!graph->vertexList[i].visited){cout << graph->vertexList[i].vertexLabel << " ";graph->vertexList[i].visited = true;}EdgeNode *p = graph->vertexList[i].first;while (p != NULL){if(!graph->vertexList[p->vtxNO].visited)//notice!DFS(graph, p->vtxNO);p = p->next;}
}void BeginDFS(Graph *graph)
{if(graph == NULL) return;cout << "DFS\n";for (int i = 0; i < graph->vertexes; i++)graph->vertexList[i].visited = false;for (int i = 0; i < graph->vertexes; i++)DFS(graph,i);
}
//breadth first search(use queue)
//BFS is similar to leverorder traversal of trees
//all of the vertexes will be searched once no matter how the digraph is constructed
void BFS(Graph *graph)
{if(graph == NULL)return;cout << "BFS\n";for (int i = 0; i < graph->vertexes; i++)graph->vertexList[i].visited = false;queue<int> QVertex;for (int i = 0; i < graph->vertexes; i++){if (!graph->vertexList[i].visited){QVertex.push(i);cout << graph->vertexList[i].vertexLabel << " ";graph->vertexList[i].visited = true;}while(!QVertex.empty()){int vtxNO = QVertex.front();QVertex.pop();EdgeNode *p = graph->vertexList[vtxNO].first;while(p != NULL){if (!graph->vertexList[p->vtxNO].visited){cout << graph->vertexList[p->vtxNO].vertexLabel << " ";graph->vertexList[p->vtxNO].visited = true;QVertex.push(p->vtxNO);}p = p->next;}}}cout << "\n";
}void TopologicalSort(Graph *graph)
{//if(UNDIGRAPH) return;if(graph == NULL) return;cout << "TopologicalSort"<<"\n";int counter = 0;queue <int> qVertex;for (int i = 0; i < graph->vertexes; i++){if(GetIndegree(graph,i) == 0)qVertex.push(i);}while (!qVertex.empty()){int vtxNO = qVertex.front();counter++;cout << graph->vertexList[vtxNO].vertexLabel;if(counter != graph->vertexes)cout << " > ";qVertex.pop();EdgeNode *p = graph->vertexList[vtxNO].first;while(p != NULL){int vtxNo = p->vtxNO;/*EdgeNode *tmp = p;p = p->next;delete tmp;tmp = NULL;*/// although tmp is NULL,but p is not NULL,and the data pointed by p has been deletedp = p->next;//if (GetIndegree(graph,vtxNo) == 0)//error,in while(p != NULL),so use a variable indegree insteadif (--graph->vertexList[vtxNo].indegree == 0)qVertex.push(vtxNo);}}cout << "\n";
}void Dijkstra(Graph *graph, int v)
{if(graph == NULL) return;if(v < 0 || v > graph->vertexes-1) return;for (int i = 0; i < graph->vertexes; i++){graph->vertexList[i].visited = false;graph->vertexList[i].distance = INT_MAX;//can delete this line,as initialized in BuildGraphgraph->vertexList[i].path = -1;}graph->vertexList[v].distance = 0;//the rest are all INT_MAXwhile(1){int minDisInx = -1;int minDis = INT_MAX;for (int i = 0; i < graph->vertexes; i++){if(!graph->vertexList[i].visited){if(graph->vertexList[i].distance < minDis){minDis = graph->vertexList[i].distance;minDisInx = i;}}}if(minDisInx == -1)//all visitedbreak;graph->vertexList[minDisInx].visited = true;EdgeNode *p = graph->vertexList[minDisInx].first;while(p != NULL){int vtxNO = p->vtxNO;if(!graph->vertexList[vtxNO].visited){if (graph->vertexList[minDisInx].distance + p->weight < graph->vertexList[vtxNO].distance){graph->vertexList[vtxNO].distance = graph->vertexList[minDisInx].distance + p->weight;graph->vertexList[vtxNO].path = minDisInx;cout << graph->vertexList[vtxNO].vertexLabel << " Updated to " << graph->vertexList[vtxNO].distance << "\n";}}p = p->next;}}cout << "Vertex  Visited  Distance  Path\n";for (int i = 0; i < graph->vertexes; i++){cout << graph->vertexList[i].vertexLabel<< "	";cout << graph->vertexList[i].visited<< "	";cout << graph->vertexList[i].distance<< "	";if(graph->vertexList[i].path == -1)cout << "NONE\n";elsecout << graph->vertexList[graph->vertexList[i].path].vertexLabel << "\n";}
}//almost for undigraph
void Prim(Graph *graph, int v)
{if(graph == NULL) return;if(v < 0 || v > graph->vertexes-1) return;for (int i = 0; i < graph->vertexes; i++){graph->vertexList[i].visited = false;graph->vertexList[i].distance = INT_MAX;//can delete this line,as initialized in BuildGraphgraph->vertexList[i].path = -1;}graph->vertexList[v].distance = 0;//the rest are all INT_MAXwhile(1){int minDisInx = -1;int minDis = INT_MAX;for (int i = 0; i < graph->vertexes; i++){if(!graph->vertexList[i].visited){if(graph->vertexList[i].distance < minDis){minDis = graph->vertexList[i].distance;minDisInx = i;}}}if(minDisInx == -1)//all visitedbreak;graph->vertexList[minDisInx].visited = true;EdgeNode *p = graph->vertexList[minDisInx].first;while(p != NULL){int vtxNO = p->vtxNO;if(!graph->vertexList[vtxNO].visited){if (p->weight < graph->vertexList[vtxNO].distance){graph->vertexList[vtxNO].distance = p->weight;graph->vertexList[vtxNO].path = minDisInx;cout << graph->vertexList[vtxNO].vertexLabel << " Updated to " << graph->vertexList[vtxNO].distance << "\n";}}p = p->next;}}cout << "Vertex  Visited  Distance  Path\n";for (int i = 0; i < graph->vertexes; i++){cout << graph->vertexList[i].vertexLabel<< "	";cout << graph->vertexList[i].visited<< "	";cout << graph->vertexList[i].distance<< "	";if(graph->vertexList[i].path == -1)cout << "NONE\n";elsecout << graph->vertexList[graph->vertexList[i].path].vertexLabel << "\n";}}
int main()
{Graph *graph = NULL;BuildGraph(graph,7);PrintGraph(graph);//for simple test, 0 indexed/*AddEdge(graph,0,1,1);AddEdge(graph,0,2,1);AddEdge(graph,1,3,1);*///for TopologicalSort//0 indexedAddEdge(graph,0,1,1);AddEdge(graph,0,2,1);AddEdge(graph,0,3,1);AddEdge(graph,1,3,1);AddEdge(graph,1,4,1);AddEdge(graph,2,5,1);AddEdge(graph,3,2,1);AddEdge(graph,3,5,1);AddEdge(graph,3,6,1);AddEdge(graph,4,3,1);AddEdge(graph,4,6,1);AddEdge(graph,6,5,1);PrintGraph(graph);RemoveEdge(graph,6,5);AddEdge(graph,6,5,1);//for Dijkstra(shortest path),Prim(minimum spanning tree)//0 indexed/*AddEdge(graph,0,1,2);  AddEdge(graph,0,3,1);  AddEdge(graph,1,3,3);  AddEdge(graph,1,4,10);  AddEdge(graph,2,0,4);  AddEdge(graph,2,5,5);  AddEdge(graph,3,2,2);AddEdge(graph,3,4,2);AddEdge(graph,3,5,8);  AddEdge(graph,3,6,4);  AddEdge(graph,4,6,6);  AddEdge(graph,6,5,1);*/PrintGraph(graph);BeginDFS(graph);cout << "\n";BFS(graph);for (int i = 0; i < graph->vertexes; i++){cout << "\n";Dijkstra(graph,i);}Prim(graph,0);TopologicalSort(graph);MakeEmpty(graph);return 0;
}


这篇关于图(有向图)的邻接表表示 C++实现(遍历,拓扑排序,最短路径,最小生成树) Implement of digraph and undigraph using adjacency list的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/472262

相关文章

Spring Boot 实现 IP 限流的原理、实践与利弊解析

《SpringBoot实现IP限流的原理、实践与利弊解析》在SpringBoot中实现IP限流是一种简单而有效的方式来保障系统的稳定性和可用性,本文给大家介绍SpringBoot实现IP限... 目录一、引言二、IP 限流原理2.1 令牌桶算法2.2 漏桶算法三、使用场景3.1 防止恶意攻击3.2 控制资源

springboot下载接口限速功能实现

《springboot下载接口限速功能实现》通过Redis统计并发数动态调整每个用户带宽,核心逻辑为每秒读取并发送限定数据量,防止单用户占用过多资源,确保整体下载均衡且高效,本文给大家介绍spring... 目录 一、整体目标 二、涉及的主要类/方法✅ 三、核心流程图解(简化) 四、关键代码详解1️⃣ 设置

Nginx 配置跨域的实现及常见问题解决

《Nginx配置跨域的实现及常见问题解决》本文主要介绍了Nginx配置跨域的实现及常见问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来... 目录1. 跨域1.1 同源策略1.2 跨域资源共享(CORS)2. Nginx 配置跨域的场景2.1

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

CSS实现元素撑满剩余空间的五种方法

《CSS实现元素撑满剩余空间的五种方法》在日常开发中,我们经常需要让某个元素占据容器的剩余空间,本文将介绍5种不同的方法来实现这个需求,并分析各种方法的优缺点,感兴趣的朋友一起看看吧... css实现元素撑满剩余空间的5种方法 在日常开发中,我们经常需要让某个元素占据容器的剩余空间。这是一个常见的布局需求

HTML5 getUserMedia API网页录音实现指南示例小结

《HTML5getUserMediaAPI网页录音实现指南示例小结》本教程将指导你如何利用这一API,结合WebAudioAPI,实现网页录音功能,从获取音频流到处理和保存录音,整个过程将逐步... 目录1. html5 getUserMedia API简介1.1 API概念与历史1.2 功能与优势1.3

Java实现删除文件中的指定内容

《Java实现删除文件中的指定内容》在日常开发中,经常需要对文本文件进行批量处理,其中,删除文件中指定内容是最常见的需求之一,下面我们就来看看如何使用java实现删除文件中的指定内容吧... 目录1. 项目背景详细介绍2. 项目需求详细介绍2.1 功能需求2.2 非功能需求3. 相关技术详细介绍3.1 Ja

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

Windows下C++使用SQLitede的操作过程

《Windows下C++使用SQLitede的操作过程》本文介绍了Windows下C++使用SQLite的安装配置、CppSQLite库封装优势、核心功能(如数据库连接、事务管理)、跨平台支持及性能优... 目录Windows下C++使用SQLite1、安装2、代码示例CppSQLite:C++轻松操作SQ

PostgreSQL中MVCC 机制的实现

《PostgreSQL中MVCC机制的实现》本文主要介绍了PostgreSQL中MVCC机制的实现,通过多版本数据存储、快照隔离和事务ID管理实现高并发读写,具有一定的参考价值,感兴趣的可以了解一下... 目录一 MVCC 基本原理python1.1 MVCC 核心概念1.2 与传统锁机制对比二 Postg