深度学习优化策略-4 基于Gate Mechanism的激活单元GTU、GLU

2023-12-09 00:20

本文主要是介绍深度学习优化策略-4 基于Gate Mechanism的激活单元GTU、GLU,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


1、Sigmoid和Tanh激活函数及存在问题

    深度学习(神经网络)中最先被广泛使用的激活函数是Sigmoid函数和双曲正切激活函数,都是非线性的激活函数,两个激活函数的表达式如下:

sigmoid函数:      f(x)= 1 / (1+exp(−x))

双曲正切函数:       f(x)= tanh(x)

    激活函数的图形如图所示:

    Sigmoid和双曲正切激活函数有两个明显的缺点:

    1、存在饱和死区特性,梯度反向传播时,容易导致梯度爆炸(Gradient Explosion)和梯度消失(Gradient Vanish)问题。

    2、对于多层非线性变换嵌套操作的深度学习网络,关于参数W的梯度计算比较复杂,计算量大。

2、Relu系列激活函数

    为了解决上面两个问题,深度学习研究领域陆续提出了Relu(Rectified linear unit)及其变体Leaky Relu、Elu、pRelu、PRelu、RRelu等。借鉴LSTM的Gate Mechanism思想,基于Relu激活函数和Tanh激活函数,结合gate unit产生的GTU units、GLU units等激活单元。

    Relu激活函数的表达式为:f(x)=max(0,x)

    Relu激活函数及它一些变体的曲线如下图所示:

    关于Relu及其变体激活函数介绍的资料比较多,这里我就不赘述了。

3、基于Gate mechanism的GLU、GTU 单元

    介绍一下基于gate mechanism实现的,两个比较新颖的激活函数GTU和GLU。

    GTU(Gated Tanh Unit)的表达式为:

    f(X) = tanh(X*W+b) * O(X*V+c)

    GLU(Gated Liner Unit)的表达式为:

    f(X) = (X * W + b) * O(X * V + c)

    分析GTU和GLU的组成结构可以发现:

  Tanh激活单元:tanh(X*W+b),加上一个Sigmoid激活单元:O(X*V+c)构成的gate unit,就构成了GTU单元。

   Relu激活单元:(X * W + b),加上一个Sigmoid激活单元:O(X * V + c)构成的gate unit,就构成了GLU单元。

4、gate mechanism影响及各激活单元对比

    下图实验结果来源于论文《Language Modeling with Gated Convolutional Networks》 5.2节。

图1 Tanh、Relu、GTU和GLU激活单元性能对比

(1)、gate mechanism 影响

把GTU中的Sigmoid gate去掉的话,就是一个Tanh激活函数。因此,可以通过比较Tanh和GTU的实验效果,来对比Gate mechanism对模型性能的影响。通过图1中的左图可以发现,使用GTU的效果远远优于Tanh激活函数,可见,gate units有助于深度网络建模。

(2)、Tanh、GLU与Relu、GLU对比

Tanh激活函数和GTU都存在梯度消失的问题,因为即使是GTU,当units的激活处于饱和区时,输入单元激活单元:tanh(X*W+b)和gate单元:O(X * V + c)都会削弱梯度值。相反,GLU和Relu不存在这样的问题。GLU和Relu都拥有线性的通道,可以使梯度很容易通过激活的units,反向传播且不会减小。因此,采用GLU或Relu做为激活,训练时收敛速度更快。

(3)、Relu与GLU对比

Relu单元并没有完全抛弃GLU中的gate units,GLU可以看做是处于激活状态下的一种简化的Relu单元。对比Relu和GLU,通过图1右图可以大显,在相同的训练时间下,GLU单元可以获得比Relu更高的精度。

(4)GLU与GTU对比:

GTU存在tanh激活的非线性单元,GLU存在的线性单元,GLU中不存在类似于GTU中的梯度消失问题。通过对比可以发现,GLU获得比GTU更快的收敛速度,以及更高的准确率。

5、参考文献

[1] Conditional Image Generation with PixelCNN Decoders

[2] Language Modeling with Gated Convolutional Networks

更多深度学习在NLP方面应用的经典论文、实践经验和最新消息,欢迎关注微信公众号深度学习与NLPDeepLearning_NLP”或扫描二维码添加关注。


这篇关于深度学习优化策略-4 基于Gate Mechanism的激活单元GTU、GLU的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/471816

相关文章

深度解析Spring Security 中的 SecurityFilterChain核心功能

《深度解析SpringSecurity中的SecurityFilterChain核心功能》SecurityFilterChain通过组件化配置、类型安全路径匹配、多链协同三大特性,重构了Spri... 目录Spring Security 中的SecurityFilterChain深度解析一、Security

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

小白也能轻松上手! 路由器设置优化指南

《小白也能轻松上手!路由器设置优化指南》在日常生活中,我们常常会遇到WiFi网速慢的问题,这主要受到三个方面的影响,首要原因是WiFi产品的配置优化不合理,其次是硬件性能的不足,以及宽带线路本身的质... 在数字化时代,网络已成为生活必需品,追剧、游戏、办公、学习都离不开稳定高速的网络。但很多人面对新路由器

MySQL深分页进行性能优化的常见方法

《MySQL深分页进行性能优化的常见方法》在Web应用中,分页查询是数据库操作中的常见需求,然而,在面对大型数据集时,深分页(deeppagination)却成为了性能优化的一个挑战,在本文中,我们将... 目录引言:深分页,真的只是“翻页慢”那么简单吗?一、背景介绍二、深分页的性能问题三、业务场景分析四、

Linux进程CPU绑定优化与实践过程

《Linux进程CPU绑定优化与实践过程》Linux支持进程绑定至特定CPU核心,通过sched_setaffinity系统调用和taskset工具实现,优化缓存效率与上下文切换,提升多核计算性能,适... 目录1. 多核处理器及并行计算概念1.1 多核处理器架构概述1.2 并行计算的含义及重要性1.3 并

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧