大创项目推荐 医学大数据分析 - 心血管疾病分析

2023-12-09 00:13

本文主要是介绍大创项目推荐 医学大数据分析 - 心血管疾病分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 1 前言
  • 1 课题背景
  • 2 数据处理
  • 3 数据可视化
  • 4 最后

1 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 基于大数据的心血管疾病分析

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 课题背景

本项目的任务是利用患者的检查结果预测心血管疾病(CVD)的存在与否。

2 数据处理

数据集包括年龄、性别、收缩压、舒张压等12个特征的患者数据记录7万份。

当患者有心血管疾病时,目标类“cardio”等于1,如果患者健康,则为0。

数据描述

有三种类型的输入特征:

  • Objective: 客观事实;
  • Examination: 体检检查结果;
  • Subjective: 病人提供的信息

在这里插入图片描述
数据信息概览

import numpy as npimport pandas as pdimport seaborn as snsfrom matplotlib import pyplot as pltimport osdf.head()

在这里插入图片描述
变量分析

df.info()

在这里插入图片描述
所有特征都是数字,12个整数和1个小数(权值)。第二列告诉我们数据集有多大,每个字段有多少非空值。
我们可以使用’ describe() ‘来显示每个属性的样本统计信息,比如’ min ‘、’ max ‘、’ mean ‘、’ std ':

评论

df.describe()

在这里插入图片描述
年龄以天为单位,身高以厘米为单位。
让我们看看数值变量以及它们是如何在目标类中分布的。
例如,什么年龄患有心血管疾病的人数超过没有心血管疾病的人数?

3 数据可视化

from matplotlib import rcParams
rcParams['figure.figsize'] = 11, 8
df['years'] = (df['age'] / 365).round().astype('int')
sns.countplot(x='years', hue='cardio', data = df, palette="Set2");

在这里插入图片描述
可以观察到55岁以上的人更容易得心血管疾病的。
从上面的表格中,我们可以看到ap_hi, ap_lo, weight 和height中有异常值。我们以后再处理。

让我们看看数据集中的分类变量及其分布:

df_categorical = df.loc[:,['cholesterol','gluc', 'smoke', 'alco', 'active']]
sns.countplot(x="variable", hue="value",data= pd.melt(df_categorical));

在这里插入图片描述

df_long = pd.melt(df, id_vars=['cardio'], value_vars=['cholesterol','gluc', 'smoke', 'alco', 'active'])
sns.catplot(x="variable", hue="value", col="cardio",data=df_long, kind="count");

在这里插入图片描述
可以清楚地看到,CVD患者的胆固醇和血糖水平较高。而且一般来说不太活跃,运动少。

为了计算“1”在性别栏中代表女性还是男性,让我们计算每个性别的身高平均值。我们假设男人平均比女人高。

corr = df.corr()
cmap = sns.diverging_palette(220, 10, as_cmap=True)
mask = np.zeros_like(corr, dtype=np.bool)
mask[np.triu_indices_from(mask)] = True# 设置matplotlib图
f, ax = plt.subplots(figsize=(11, 9))
# 画出热图,并校正长宽比
sns.heatmap(corr, mask=mask, cmap=cmap, vmax=.3, center=0,annot = True,square=True, linewidths=.5, cbar_kws={"shrink": .5});

在这里插入图片描述
我们可以看到年龄和胆固醇有显著的影响,但与目标阶层的相关性不是很高。

.
让我们创建violinplot来显示不同性别的身高分布。

查看每个性别特征值的身高和体重的平均值可能不足以决定1是男性还是女性。

import warnings
warnings.filterwarnings("ignore")
df_melt = pd.melt(frame=df, value_vars=['height'], id_vars=['gender'])
plt.figure(figsize=(12, 10))
ax = sns.violinplot(x='variable', y='value', hue='gender', split=True, data=df_melt, scale='count',scale_hue=False,palette="Set2");

在这里插入图片描述
让我们创造一个新的特征-身体质量指数(BMI):

在这里插入图片描述
比较健康人的平均BMI和病人的平均BMI。正常的BMI值在18.5到25之间。

df['BMI'] = df['weight']/((df['height']/100)**2)
sns.catplot(x="gender", y="BMI", hue="alco", col="cardio", data=df, color = "yellow",kind="box", height=10, aspect=.7);

在这里插入图片描述
根据女性的BMI,喝酒的女性比喝酒的男性有更高的心血管疾病风险。

4 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

这篇关于大创项目推荐 医学大数据分析 - 心血管疾病分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/471805

相关文章

Django调用外部Python程序的完整项目实战

《Django调用外部Python程序的完整项目实战》Django是一个强大的PythonWeb框架,它的设计理念简洁优雅,:本文主要介绍Django调用外部Python程序的完整项目实战,文中通... 目录一、为什么 Django 需要调用外部 python 程序二、三种常见的调用方式方式 1:直接 im

Springboot请求和响应相关注解及使用场景分析

《Springboot请求和响应相关注解及使用场景分析》本文介绍了SpringBoot中用于处理HTTP请求和构建HTTP响应的常用注解,包括@RequestMapping、@RequestParam... 目录1. 请求处理注解@RequestMapping@GetMapping, @PostMappin

JAVA项目swing转javafx语法规则以及示例代码

《JAVA项目swing转javafx语法规则以及示例代码》:本文主要介绍JAVA项目swing转javafx语法规则以及示例代码的相关资料,文中详细讲解了主类继承、窗口创建、布局管理、控件替换、... 目录最常用的“一行换一行”速查表(直接全局替换)实际转换示例(JFramejs → JavaFX)迁移建

Spring Boot Interceptor的原理、配置、顺序控制及与Filter的关键区别对比分析

《SpringBootInterceptor的原理、配置、顺序控制及与Filter的关键区别对比分析》本文主要介绍了SpringBoot中的拦截器(Interceptor)及其与过滤器(Filt... 目录前言一、核心功能二、拦截器的实现2.1 定义自定义拦截器2.2 注册拦截器三、多拦截器的执行顺序四、过

JavaWeb项目创建、部署、连接数据库保姆级教程(tomcat)

《JavaWeb项目创建、部署、连接数据库保姆级教程(tomcat)》:本文主要介绍如何在IntelliJIDEA2020.1中创建和部署一个JavaWeb项目,包括创建项目、配置Tomcat服务... 目录简介:一、创建项目二、tomcat部署1、将tomcat解压在一个自己找得到路径2、在idea中添加

解决idea启动项目报错java: OutOfMemoryError: insufficient memory

《解决idea启动项目报错java:OutOfMemoryError:insufficientmemory》:本文主要介绍解决idea启动项目报错java:OutOfMemoryError... 目录原因:解决:总结 原因:在Java中遇到OutOfMemoryError: insufficient me

python项目环境切换的几种实现方式

《python项目环境切换的几种实现方式》本文主要介绍了python项目环境切换的几种实现方式,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 如何在不同python项目中,安装不同的依赖2. 如何切换到不同项目的工作空间3.创建项目

SpringBoot项目整合Netty启动失败的常见错误总结

《SpringBoot项目整合Netty启动失败的常见错误总结》本文总结了SpringBoot集成Netty时常见的8类问题及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录一、端口冲突问题1. Tomcat与Netty端口冲突二、主线程被阻塞问题1. Netty启动阻

python项目打包成docker容器镜像的两种方法实现

《python项目打包成docker容器镜像的两种方法实现》本文介绍两种将Python项目打包为Docker镜像的方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 目录简单版:(一次成功,后续下载对应的软件依赖)第一步:肯定是构建dockerfile,如下:第二步

Python + Streamlit项目部署方案超详细教程(非Docker版)

《Python+Streamlit项目部署方案超详细教程(非Docker版)》Streamlit是一款强大的Python框架,专为机器学习及数据可视化打造,:本文主要介绍Python+St... 目录一、针对 Alibaba Cloud linux/Centos 系统的完整部署方案1. 服务器基础配置(阿里