python学习——对大疆御3E拍摄照片赋予坐标系并旋转

2023-12-08 18:44

本文主要是介绍python学习——对大疆御3E拍摄照片赋予坐标系并旋转,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

对大疆御3E拍摄照片赋予坐标系并旋转

问题描述

进行植被覆盖度验证时,需采集验证点的植被覆盖情况,但无人机拍摄的照片缺少坐标系,无法进行对比验证。

解决方案

赋予照片坐标系

在gdal中对影像赋予坐标系主要参数为仿射六参数:左上角坐标,xy分辨率和旋转信息,故只需解决该6个参数信息即可将照片初步赋予坐标系,本次以赋予WGS-84坐标系为例。

左上角坐标计算

查看照片属性中的详细信息,其中记录了照片拍摄时的GPS信息(中心坐标)或对照片使用记事本打开,其中 drone-dji:GpsLatitude="“和drone-dji:GpsLongitude=”"两个参数也记录了经纬度信息。根据该GPS信息进行左上角坐标计算,方法为将该坐标视为图像中心坐标,无人机拍摄的照片分辨率已知(3cm),根据中心坐标的行列号与左上角坐标的行列号、xy分辨率计算出左上角坐标计算。

import re
from osgeo import gdal
import osdef png_deal(tif_src, png_file, out_folder, out_name):''':param tif_src:正射影像的dataset,用于获取xy分辨率(如果这里没有正射影像,可自行设定分辨率):param png_file:待校正照片的绝对路径:param out_folder:输出文件夹:param out_name:输出名字:return:'''tif_geo = tif_src.GetGeoTransform()tif_x_res = tif_geo[1]tif_y_res = tif_geo[5]png_src = gdal.Open(png_file)# get png metadatapng_meta = png_src.GetMetadata()# get latitude longitude x ypng_lon = png_meta['EXIF_GPSLongitude']png_lat = png_meta['EXIF_GPSLatitude']png_x = png_src.RasterXSizepng_y = png_src.RasterYSize# change mile to degreepng_x_res = tif_x_res / (2 * math.pi * 6371004) * 360;png_y_res = tif_y_res / (2 * math.pi * 6371004) * 360;lon_str = re.findall(r'\d+', png_lon)lon_decimal = float(lon_str[0]) + float(lon_str[1])/60 + (float(lon_str[2]) )/3600lat_str = re.findall(r'\d+', png_lat)lat_decimal = float(lat_str[0]) + float(lat_str[1])/60 + (float(lat_str[2]))/3600# caculate the left-top coordinatepng_left_coord = [lon_decimal - png_x_res * png_x/2, lat_decimal - png_y_res * png_y/2]out_png_geom = [png_left_coord[0], png_x_res, 0.0, png_left_coord[1], 0.0, png_y_res]srs = osr.SpatialReference()srs.ImportFromEPSG(4326)# export the png tifdriver = gdal.GetDriverByName('GTiff')# out_tif = driver.Create(name=out_name, ysize=tar_y, xsize=tar_x, bands=tar_bandnum, eType=tar_datatype)out_tif = driver.Create(out_name, png_x, png_y, png_src.RasterCount, eType=png_src.GetRasterBand(1).DataType)for i in range(png_src.RasterCount):data = png_src.GetRasterBand(i+1).ReadAsArray()band = out_tif.GetRasterBand(i+1).WriteArray(data)del data, bandout_tif.SetProjection(srs.ExportToWkt())out_tif.SetGeoTransform(out_png_geom)out_tif.FlushCache()return out_tif

对照片进行旋转

对照片使用记事本打开,其中drone-dji:FlightYawDegree=""记录了照片的旋转信息,这里借助Affrine库实现对影像的旋转

# 该函数主要获取照片的偏航角
def Get_Image_Yaw_angle(file_path):""":param file_path: 输入图片路径:return: 图片的偏航角"""# 获取图片偏航角b = b"\x3c\x2f\x72\x64\x66\x3a\x44\x65\x73\x63\x72\x69\x70\x74\x69\x6f\x6e\x3e"a = b"\x3c\x72\x64\x66\x3a\x44\x65\x73\x63\x72\x69\x70\x74\x69\x6f\x6e\x20"img = open(file_path, 'rb')data = bytearray()dj_data_dict = {}flag = Falsefor line in img.readlines():if a in line:flag = Trueif flag:data += lineif b in line:breakif len(data) > 0:data = str(data.decode('ascii'))lines = list(filter(lambda x: 'drone-dji:' in x, data.split("\n")))for d in lines:d = d.strip()[10:]key, value = d.split("=")dj_data_dict[key] = value# print("Image_yaw",dj_data_dict["FlightYawDegree"][1:-1])return float(dj_data_dict["FlightYawDegree"][1:-1])# 获取中心像元行列号
def raster_center(ds):"""This function return the pixel coordinates of the raster center"""# We get the size (in pixels) of the raster# using gdalwidth, height = ds.RasterXSize, ds.RasterYSize# We calculate the middle of rasterxmed = width / 2ymed = height / 2tar_geom = ds.GetGeoTransform()tar_Xp = tar_geom [0] + xmed * tar_geom[1] + ymed * tar_geom[2]tar_Yp = tar_geom [3] + xmed * tar_geom[4] + ymed * tar_geom[5]return [tar_Xp, tar_Yp]
# 对照片进行旋转
def rotate_gt(affine_matrix, angle, pivot=None):"""This function generate a rotated affine matrix"""affine_src = Affine.from_gdal(*affine_matrix)# We made the rotation. For this we calculate a rotation matrix,# with the rotation method and we combine it with the original affine matrix# Be carful, the star operator (*) is surcharged by Affine package. He make# a matrix multiplication, not a basic multiplicationaffine_dst = affine_src * affine_src.rotation(angle, pivot)# We retrun the rotated matrix in gdal formatreturn affine_dst.to_gdal()yaw_angle = Get_Image_Yaw_angle(jpg_file)
after_coordinate_file = r'输入赋予坐标系后的照片路径'
dataset_src = gdal.Open(after_coordinate_file)
out_fin_folder = r'输出文件夹'
out_file = r'输出绝对路径'
# 创建输出路径
driver = gdal.GetDriverByName('GTiff')
datase_dst = driver.CreateCopy(out_file, dataset_src, strict=0)
gt_affine = dataset_src.GetGeoTransform()
center = raster_center(dataset_src)
# 进行旋转输出
datase_dst.SetGeoTransform(rotate_gt(gt_affine, yaw_angle, center))

结果如下
原始照片:
在这里插入图片描述
校正后结果:
在这里插入图片描述
参考:
https://blog.csdn.net/m0_56729804/article/details/131695618

这篇关于python学习——对大疆御3E拍摄照片赋予坐标系并旋转的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/470952

相关文章

Django开发时如何避免频繁发送短信验证码(python图文代码)

《Django开发时如何避免频繁发送短信验证码(python图文代码)》Django开发时,为防止频繁发送验证码,后端需用Redis限制请求频率,结合管道技术提升效率,通过生产者消费者模式解耦业务逻辑... 目录避免频繁发送 验证码1. www.chinasem.cn避免频繁发送 验证码逻辑分析2. 避免频繁

精选20个好玩又实用的的Python实战项目(有图文代码)

《精选20个好玩又实用的的Python实战项目(有图文代码)》文章介绍了20个实用Python项目,涵盖游戏开发、工具应用、图像处理、机器学习等,使用Tkinter、PIL、OpenCV、Kivy等库... 目录① 猜字游戏② 闹钟③ 骰子模拟器④ 二维码⑤ 语言检测⑥ 加密和解密⑦ URL缩短⑧ 音乐播放

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON: