如何选择合适的运筹优化求解器?

2023-12-08 18:44

本文主要是介绍如何选择合适的运筹优化求解器?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • 求解器对比
    • 问题延伸:商用求解器和开源求解器的差别是什么?
  • 求解器PK
  • 总结
  • 参考资料

前言

求解器对于运筹算法工程师而言,常常像一个黑盒,我们扔进去输入数据和数学模型,求解器给我们吐出一个解出来。这种状态在面临规模小、形式简单的数学模型是还可以应付的,但一旦问题难度上来,原本用着舒服的求解器可能求解你的问题太慢了,又或者根本无法给到符合预期的解,这时就会面临到底选择哪个求解器更合适的问题?
在这里插入图片描述

这里的合适代表既准又快,需要综合考虑:

  1. 自己的问题类型是什么?线性规划?整数规划?二次规划?这里可以参考我的文章运筹学算法分类快速判断;
  2. 不同求解器适用的问题类型;
  3. 开源还是商用?

2和3都会在接下来的梳理中体现。

求解器对比

求解器 国家 类型 支持的数学问题 优点 缺点 Python API
Gurobi美国商用 擅长:LP、MIP、凸和非凸的二次混合整数规划;
支持:(1) 线性约束和目标模型(连续变量、混合整数);(2)二阶锥模型(连续变量、混合整数);(3)二次凸约束和目标模型(连续变量、混合整数);(4)二次非凸(双线性、二次等式约束)约束和目标模型(连续变量、混合整数);(5)非线性模型(除式、高阶多项式、指数、对数、三角函数、范数等)(连续变量、混合整数)
可以叠加许多功能:(1)约束和目标中带有最大、最小、绝对值等数学函数,或者带有AND、OR、INDICATOR逻辑条件的模型;(2)多目标优化;(3)需要获得部分或者全部可行解或者最优解的模型;(4)不可行或者无解分析;(5)优化参数自动调优功能;(6)分布式计算或者多线程计算支持
Cplex美国商用LP、QP、QCQP、二阶锥规划(SOCP)、MIP支持
Xpress美国商用LP、MILP、QP、QCQP、SOCP、NLP、CP支持
COPT中国商用LP、MIP、二阶锥规划、半定规划、凸二次(约束)规划支持
SCIP德国开源MIP、MINLP、非凸优化问题用于MIP的最快的非商业求解器之一、支持Branch&Price、支持 McCormick relaxation 和 convex envelope relaxation 这两种非凸问题处理方法支持
OR-TOOLs美国开源LP、IP、约束规划、MIP跨平台性不支持非线性规划支持
IPOPT美国开源非线性规划问题(凸和非凸均可)对初始值敏感(影响算法收敛和迭代次数)、对于非凸问题可能陷入局部最优支持
GLPK美国开源大规模线性规划、MIP不支持非线性规划支持
CBC美国开源LP、MIP不支持非线性问题支持

梳理的过程中发现了一个wikipedia提供的表格:
在这里插入图片描述

问题延伸:商用求解器和开源求解器的差别是什么?

不同求解器底层的差异是它们是否能够正确的识别并利用模型的结构,而这直接决定了求解器的表现(求解速度、支持准确求解的问题类型、支持的问题规模、解的质量)。有些问题开源求解器无法支持,只有一些商业求解器才能求解,还有的问题,商业求解器的求解速度更佳。
在这里插入图片描述

导致这一差距的原因也很好理解——“Commercial vendors with their teams of full-time developers and their large customer base who provide models from a diverse set of applications are just in a much better position to develop, implement, and tune algorithms to cover all these different aspects and structures that appear in real-world models.”

求解器PK

目前主要是参考 H. Mittelmann 教授的评测网站,会从很多维度对各个求解器进行测试,最终从解决的问题数和耗时两个方面评分。
比如对于MIP问题,最新的测评结果是:

在这里插入图片描述

在这里插入图片描述

总结

回到我们文章标题的问题,拿到实际问题后怎么选择合适的求解器呢,我总结了3个步骤:
(1)判断数学问题类型,看看手头已有的求解器是否就能支持(判断方法可以查阅上面的表格);
啰嗦一句:排除不支持你这类问题的求解器,为什么单独强调这么一句呢?举个例子,你建模的问题是个整数规划问题,而IPOPT主要是用于求解非线性规划的,就不太适用于你这个问题。那问题来了,我就是把这个整数规划问题丢给IPOPT求解会怎么样呢?我亲自踩过这样的坑Pyomo调用IPOPT:0-1变量给出小数解,血泪教训!

(2)快速实验,找一个支持的求解器在小规模case上测试下;
如果你的问题规模本身就很小,而且在这一步的求解质量和速度都已经满足要求了,那么恭喜你,不用再继续往下看了!多测试一些case保证模型的鲁棒性即可。如果你不幸的发现,小规模测试OK,但测试案例规模放大,模型求解很久仍然没有给到解,无法支持上线实时计算的规模和时间要求(和现在的我一样),那么就进入下一步的打怪中。

(3)优化大规模问题的求解速度
这里持续更新中,我还在调研…

参考资料

  1. Evaluating Operational Research Solvers
  2. 整数规划求解器介绍
  3. The advantages of commercial solvers
  4. What does CPLEX solve ?
  5. Python运筹学求解器
  6. 市面上的数学规划求解器有哪些?
  7. COIN-OR
  8. H. Mittelmann 教授的评测网站
  9. Visualizations of Mittelmann benchmarks

这篇关于如何选择合适的运筹优化求解器?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/470951

相关文章

Python绘制TSP、VRP问题求解结果图全过程

《Python绘制TSP、VRP问题求解结果图全过程》本文介绍用Python绘制TSP和VRP问题的静态与动态结果图,静态图展示路径,动态图通过matplotlib.animation模块实现动画效果... 目录一、静态图二、动态图总结【代码】python绘制TSP、VRP问题求解结果图(包含静态图与动态图

Docker多阶段镜像构建与缓存利用性能优化实践指南

《Docker多阶段镜像构建与缓存利用性能优化实践指南》这篇文章将从原理层面深入解析Docker多阶段构建与缓存机制,结合实际项目示例,说明如何有效利用构建缓存,组织镜像层次,最大化提升构建速度并减少... 目录一、技术背景与应用场景二、核心原理深入分析三、关键 dockerfile 解读3.1 Docke

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Python实战之SEO优化自动化工具开发指南

《Python实战之SEO优化自动化工具开发指南》在数字化营销时代,搜索引擎优化(SEO)已成为网站获取流量的重要手段,本文将带您使用Python开发一套完整的SEO自动化工具,需要的可以了解下... 目录前言项目概述技术栈选择核心模块实现1. 关键词研究模块2. 网站技术seo检测模块3. 内容优化分析模

Java实现复杂查询优化的7个技巧小结

《Java实现复杂查询优化的7个技巧小结》在Java项目中,复杂查询是开发者面临的“硬骨头”,本文将通过7个实战技巧,结合代码示例和性能对比,手把手教你如何让复杂查询变得优雅,大家可以根据需求进行选择... 目录一、复杂查询的痛点:为何你的代码“又臭又长”1.1冗余变量与中间状态1.2重复查询与性能陷阱1.

Python内存优化的实战技巧分享

《Python内存优化的实战技巧分享》Python作为一门解释型语言,虽然在开发效率上有着显著优势,但在执行效率方面往往被诟病,然而,通过合理的内存优化策略,我们可以让Python程序的运行速度提升3... 目录前言python内存管理机制引用计数机制垃圾回收机制内存泄漏的常见原因1. 循环引用2. 全局变

Python多线程应用中的卡死问题优化方案指南

《Python多线程应用中的卡死问题优化方案指南》在利用Python语言开发某查询软件时,遇到了点击搜索按钮后软件卡死的问题,本文将简单分析一下出现的原因以及对应的优化方案,希望对大家有所帮助... 目录问题描述优化方案1. 网络请求优化2. 多线程架构优化3. 全局异常处理4. 配置管理优化优化效果1.

MySQL中优化CPU使用的详细指南

《MySQL中优化CPU使用的详细指南》优化MySQL的CPU使用可以显著提高数据库的性能和响应时间,本文为大家整理了一些优化CPU使用的方法,大家可以根据需要进行选择... 目录一、优化查询和索引1.1 优化查询语句1.2 创建和优化索引1.3 避免全表扫描二、调整mysql配置参数2.1 调整线程数2.

深入解析Java NIO在高并发场景下的性能优化实践指南

《深入解析JavaNIO在高并发场景下的性能优化实践指南》随着互联网业务不断演进,对高并发、低延时网络服务的需求日益增长,本文将深入解析JavaNIO在高并发场景下的性能优化方法,希望对大家有所帮助... 目录简介一、技术背景与应用场景二、核心原理深入分析2.1 Selector多路复用2.2 Buffer

SpringBoot利用树形结构优化查询速度

《SpringBoot利用树形结构优化查询速度》这篇文章主要为大家详细介绍了SpringBoot利用树形结构优化查询速度,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一个真实的性能灾难传统方案为什么这么慢N+1查询灾难性能测试数据对比核心解决方案:一次查询 + O(n)算法解决