概率测度理论方法(第 1 部分)

2023-12-08 12:15

本文主要是介绍概率测度理论方法(第 1 部分),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、说明

        概率的应用范围广泛到经济学、量子力学、生物学甚至政治学,可以说是数学最重要的分支之一。然而,普遍教授和广泛接受的概率版本错过了一些令人难以置信的令人满意的直觉。在本文中,我们将利用这种直觉。为了做到这一点,我们求助于测度理论。对于新手读者来说,测量论,简单来说,就是对尺寸的研究。

在开始之前,定义一些事情很重要。

二、σ-代数

        测度论的核心是 σ 代数的概念。这个概念对于抽象“大小”的概念非常有用。但数学意义上的“大小”是什么意思呢?当然,我们知道大小必须遵循以下直观属性:如果我们将一个物体拆开,那么各个部分的大小之和必须等于该物体本身的大小。

        现在,在我们讨论物体及其部分的大小之前,我们需要一种以数学方式表示这些物体的方法。为了方便起见,我们以集合的形式表示对象。例如,集合 P 可以描述一个粘土球。

        现在,我们需要一种方法来描述如何将对象分解成碎片。这种“将物体分解成碎片”的概念由 P 上的 σ 代数来描述。

σ-代数的正式定义如下:

        给定集合 P 和子集 P' 的集合,如果满足以下条件,则集合 P' 是 P 上的 σ 代数:

子集集合成为 σ 代数的条件。

        直观上,σ 代数的每个元素代表对象的一个​​“部分”。上面定义中的第一个标准建立了一个“空块”(一块大小为零的块)可以被视为对象的一块。第二个标准确立了这样一个事实:如果我们折断物体的一块 A,那么剩下的物体(A 的补集)也是一个有效的块。最后,第三个标准确立了这样一个事实:如果我们将一组碎片粘合在一起,所得的碎片也是物体的一部分。

        事实上,根据这三个公理,还可以得出σ-代数不仅在集合并集下闭集,而且在集合交集、集合差和对称差下也是闭集的。从数学上来说,这意味着:

        直观理解 σ-代数的另一种方法是将集合 F 视为破碎的盘子。σ 代数 ℱ 描述了板沿裂纹破裂的所有方式。下图说明了这一点:

在此图像中,F 是物体,ℱ 是 σ 代数。

在该图中,顶部的大椭圆形是一块表面有裂纹的陶瓷板。设板上的点为集合 F。上面,我们说明了每个子集 B ⊆ F ⊆ ℱ。您可以将每个 B 视为代表去除了块的某种组合的盘子。只有当一块周围有裂缝时,我们才可以移除它。我们移除盘子大块的方法的整套配置是 F 上的 σ 代数 ℱ。

三、测量空间

        既然我们已经满足了分解物体的直观属性,我们就可以量化“大小”了。为此,我们转向测量空间。我们首先按以下方式定义一个度量:

        给定集合 P 和 P 上的 σ 代数(表示为 P'),函数

        是满足以下公理时的度量:

        在这里,度量与尺寸同义。因此,第一个标准本质上是说衡量标准不能为负。第二个标准说,没有任何东西的度量是 0。最后,两个不同部分的度量只是它们的度量之和。

        我们可以通过扩展上面陶瓷板的例子来说明这一点。这里,F 是对象,ℱ 是 F 上的 σ 代数。

        现在,我们结合所涵盖的所有内容来定义一个新想法:测量空间。测度空间只是集合(对象)、σ 代数(对象的部分)和测度(对象部分的“大小”)的组合。接下来是严格的定义。

        最后,我们定义一个可测量空间如下:

        可测空间是由集合和 σ 代数组成的对。可测量空间中的“可测量”一词暗指它能够配备测量装置。一旦配备了量具,就形成了一个完整的量具空间。

四、概率空间

        这与概率有何关系?好吧,我们可以将测度空间的定义调整为概率空间。概率空间定义如下:

        在理解了测度论的基础知识之后,我们对概率的新定义似乎有了一种更加直观的定义方式。集合 Ω 是样本空间,或所有可能结果的集合。Ω 上的 σ 代数是将所有可能结果划分为事件的一种方法,这是一个熟悉的概念。概率测度 P 只是为事件发生的概率赋值的一种方式——另一个熟悉的概念。并且,由于样本空间中的某些事件肯定会发生,因此 P(Ω)=1。

        至此,我们为更先进的概率概念发展为测度理论概念奠定了基础。在第二部分中,我们将深入研究离散和连续概率分布以及如何使用测度论来统一这两个概念。

这篇关于概率测度理论方法(第 1 部分)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/469809

相关文章

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

Python打印对象所有属性和值的方法小结

《Python打印对象所有属性和值的方法小结》在Python开发过程中,调试代码时经常需要查看对象的当前状态,也就是对象的所有属性和对应的值,然而,Python并没有像PHP的print_r那样直接提... 目录python中打印对象所有属性和值的方法实现步骤1. 使用vars()和pprint()2. 使

CSS实现元素撑满剩余空间的五种方法

《CSS实现元素撑满剩余空间的五种方法》在日常开发中,我们经常需要让某个元素占据容器的剩余空间,本文将介绍5种不同的方法来实现这个需求,并分析各种方法的优缺点,感兴趣的朋友一起看看吧... css实现元素撑满剩余空间的5种方法 在日常开发中,我们经常需要让某个元素占据容器的剩余空间。这是一个常见的布局需求

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Maven 配置中的 <mirror>绕过 HTTP 阻断机制的方法

《Maven配置中的<mirror>绕过HTTP阻断机制的方法》:本文主要介绍Maven配置中的<mirror>绕过HTTP阻断机制的方法,本文给大家分享问题原因及解决方案,感兴趣的朋友一... 目录一、问题场景:升级 Maven 后构建失败二、解决方案:通过 <mirror> 配置覆盖默认行为1. 配置示

SpringBoot排查和解决JSON解析错误(400 Bad Request)的方法

《SpringBoot排查和解决JSON解析错误(400BadRequest)的方法》在开发SpringBootRESTfulAPI时,客户端与服务端的数据交互通常使用JSON格式,然而,JSON... 目录问题背景1. 问题描述2. 错误分析解决方案1. 手动重新输入jsON2. 使用工具清理JSON3.

使用jenv工具管理多个JDK版本的方法步骤

《使用jenv工具管理多个JDK版本的方法步骤》jenv是一个开源的Java环境管理工具,旨在帮助开发者在同一台机器上轻松管理和切换多个Java版本,:本文主要介绍使用jenv工具管理多个JD... 目录一、jenv到底是干啥的?二、jenv的核心功能(一)管理多个Java版本(二)支持插件扩展(三)环境隔

Java中Map.Entry()含义及方法使用代码

《Java中Map.Entry()含义及方法使用代码》:本文主要介绍Java中Map.Entry()含义及方法使用的相关资料,Map.Entry是Java中Map的静态内部接口,用于表示键值对,其... 目录前言 Map.Entry作用核心方法常见使用场景1. 遍历 Map 的所有键值对2. 直接修改 Ma

Mybatis Plus Join使用方法示例详解

《MybatisPlusJoin使用方法示例详解》:本文主要介绍MybatisPlusJoin使用方法示例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,... 目录1、pom文件2、yaml配置文件3、分页插件4、示例代码:5、测试代码6、和PageHelper结合6

Java中实现线程的创建和启动的方法

《Java中实现线程的创建和启动的方法》在Java中,实现线程的创建和启动是两个不同但紧密相关的概念,理解为什么要启动线程(调用start()方法)而非直接调用run()方法,是掌握多线程编程的关键,... 目录1. 线程的生命周期2. start() vs run() 的本质区别3. 为什么必须通过 st