推荐系统粗排召回相关性优化的最新进展

2023-12-08 12:10

本文主要是介绍推荐系统粗排召回相关性优化的最新进展,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者:cmathx

原文链接:https://zhuanlan.zhihu.com/p/195548025

编辑:深度传送门

看到三篇干货满满&&很实用的相关性优化paper,先上论文大餐。

推荐系统粗排&召回相关性优化的最新进展

https://arxiv.org/pdf/2002.03932.pdf

Google的paper(How to pretrain?),主要是讲怎么样更好的设计pretrain任务,用于问答任务。

推荐系统粗排&召回相关性优化的最新进展

https://arxiv.org/pdf/2004.12832.pdf

Stanford的paper(How to late fusion?),主要是讲怎么样更好的让query和doc进行late fusion,用于召回侧&&粗排?相比双塔dssm模型,recall更优;相比交互式dssm模型,效率上更优。此外,召回侧可以使用faiss超大规模检索,用于工业界的搜索/推荐等系统。

推荐系统粗排&召回相关性优化的最新进展

https://arxiv.org/pdf/1905.01969.pdf

Facebook的paper(How to late fusion?),和上个paper的目的一致,怎么样进行late fusion,提高检索的效率,提高召回率。

PS:文中的截图均来自于上面三篇paper。。。

零、相关性之DSSM回顾

1)双塔DSSM模型

推荐系统粗排&召回相关性优化的最新进展

双塔DSSM模型

query(context)和doc(candidate)独立进行建模,各自得到embedding,最后进行相似度度量(L2/cosine等)。在搜索/推荐或者其他相似性检索领域,召回侧可以使用faiss(乘积量化)或者nsg(基于图检索)等方式,对超大规模的doc embedding进行索引。具体使用的时候,由query embedding来召回topk的结果用于后续的排序侧。此外,在粗排的过程中,也可以基于这种方式快速计算相似度,作为特征之一。

2)交互DSSM模型

推荐系统粗排&召回相关性优化的最新进展

交互式DSSM模型-i

推荐系统粗排&召回相关性优化的最新进展

交互式DSSM模型-ii

交互的DSSM模型,一种方式是刚开始计算出query和doc在term级别的相似度矩阵,在此基础上走神经网络,类似:KNRM、Conv-KNRM等;另一种方式和bert预训练类似,输入部分query和doc以[sep]分隔,走encoder模块建模,以隐藏层[cls]作为最终的embedding。这种方式,相比双塔DSSM模型计算相似度得分更为精确,但是计算的运算量相对较高,一般用在精排部分。

一、How to Pretrain

本文的要点是提出了ICT、BFS、WLP三种构造预训练数据的方式,用于提升预训练模型的建模能力。在问答的任务上,取得了显著的效果效果提升,实验部分测试集包括:SQuAD、Natural Qustions。

1)基本概念

下面表述下ICT、BFS、WLP三个概念到底是啥?结合paper里面的两张截图来解释下。

推荐系统粗排&召回相关性优化的最新进展

推荐系统粗排&召回相关性优化的最新进展

i)ICT:query为维基文章段落里面的某个句子;doc为该段落的其余句子;

ii)BFS:query为维基文章第一段随机选取的句子;doc为同一页面随机选取的一个段落;

iii)WLP:query为维基文章第一段随机选取的句子;doc为另外一个页面(query对应的句子,包含的超链接跳转到的页面)的某个段落;

2)实验结论

最后,贴两个主要的实验结果,来得到一些主要的实验结论。

推荐系统粗排&召回相关性优化的最新进展

BoW-MLP:基于bag-of-words的方式,走MLP网络进行建模。可以看到,结合ICT+BFS+WLP三种预训练方式,相比MLM方式实验结果显著提升。

推荐系统粗排&召回相关性优化的最新进展

三种预训练方式中,ICT效果比其他两者要好。此外,提高最终embedding的维度,实验结果会好一点。

二、ColBERT

本文的核心思想,在于怎么样让query和doc的embedding进行late fusion,相比单纯直接进行相似性度量(L2/cosine),召回率得到提高。此外,在粗排上计算速度得到显著提升,召回侧可以引入faiss进行超大规模检索。

1)建模&&检索

推荐系统粗排&召回相关性优化的最新进展

query建模:构造出统一的输入长度,不够的补[mask],采用bert进行建模,使用cnn压缩隐藏层表征长度,最终得到Eq个embedding表征。doc建模:filter表示过滤标点符号等一些不相关的表征,最终得到Ed个embedding表征。

推荐系统粗排&召回相关性优化的最新进展

在粗排的计算中,query的建模结果以一个2D矩阵存储,doc的建模结果以一个3D矩阵存储,max本质是进行max-pooling操作,最终再叠加一个矩阵求和操作。在召回侧的计算中,分成两个阶段:filter和refine,filter:max这部分的操作,对每个q_i用faiss检索出topk’的结果,得到Nq*k’个doc;refine:在Nq*k’个doc结果中,采用和粗排一样的计算方式,得到最优的k个结果,作为最终的检索结果。

2)实验结论

推荐系统粗排&召回相关性优化的最新进展

直接上一个简单的硬核实验结论,ColBERT的效果比ConvKNRM明显要好,此外检索的速度比BERT-base模型要快几个数量级。

三、Poly-Ecnoders

1)建模

推荐系统粗排&召回相关性优化的最新进展

推荐系统粗排&召回相关性优化的最新进展

和stanford paper不一致的地方,这边doc(candidate)的建模结果只有一个embedding。第一个公式,主要是用于paper里面的对话任务,query(context)为对话的前面n条记录,因此query太长了,需要做一个压缩。第二个公式,采用attention的方式,计算query中各个embedding和doc的相关性,最终采用加权向量方式作为最终query的embedding。这边计算attention的时候,引入了softmax,因此这种建模的方式引入faiss可能是个问题?paper里面也只展示了粗排的相关实验结果。

2)实验结论

推荐系统粗排&召回相关性优化的最新进展

从召回率指标上来看,在不同测试集上,Poly-encoder的实验结果基本快和Cross-encoder持平。

推荐系统粗排&召回相关性优化的最新进展

从检索的效率来看,相比Bi-encoder,Poly-encoder的检索耗时大约多了3-4倍,当候选召回在100k规模,使用cpu耗时大约678-837ms。相比Cross-encoder显然显著降低。

这篇关于推荐系统粗排召回相关性优化的最新进展的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/469783

相关文章

Linux系统中查询JDK安装目录的几种常用方法

《Linux系统中查询JDK安装目录的几种常用方法》:本文主要介绍Linux系统中查询JDK安装目录的几种常用方法,方法分别是通过update-alternatives、Java命令、环境变量及目... 目录方法 1:通过update-alternatives查询(推荐)方法 2:检查所有已安装的 JDK方

Linux系统之lvcreate命令使用解读

《Linux系统之lvcreate命令使用解读》lvcreate是LVM中创建逻辑卷的核心命令,支持线性、条带化、RAID、镜像、快照、瘦池和缓存池等多种类型,实现灵活存储资源管理,需注意空间分配、R... 目录lvcreate命令详解一、命令概述二、语法格式三、核心功能四、选项详解五、使用示例1. 创建逻

小白也能轻松上手! 路由器设置优化指南

《小白也能轻松上手!路由器设置优化指南》在日常生活中,我们常常会遇到WiFi网速慢的问题,这主要受到三个方面的影响,首要原因是WiFi产品的配置优化不合理,其次是硬件性能的不足,以及宽带线路本身的质... 在数字化时代,网络已成为生活必需品,追剧、游戏、办公、学习都离不开稳定高速的网络。但很多人面对新路由器

使用Python构建一个高效的日志处理系统

《使用Python构建一个高效的日志处理系统》这篇文章主要为大家详细讲解了如何使用Python开发一个专业的日志分析工具,能够自动化处理、分析和可视化各类日志文件,大幅提升运维效率,需要的可以了解下... 目录环境准备工具功能概述完整代码实现代码深度解析1. 类设计与初始化2. 日志解析核心逻辑3. 文件处

MySQL深分页进行性能优化的常见方法

《MySQL深分页进行性能优化的常见方法》在Web应用中,分页查询是数据库操作中的常见需求,然而,在面对大型数据集时,深分页(deeppagination)却成为了性能优化的一个挑战,在本文中,我们将... 目录引言:深分页,真的只是“翻页慢”那么简单吗?一、背景介绍二、深分页的性能问题三、业务场景分析四、

Linux进程CPU绑定优化与实践过程

《Linux进程CPU绑定优化与实践过程》Linux支持进程绑定至特定CPU核心,通过sched_setaffinity系统调用和taskset工具实现,优化缓存效率与上下文切换,提升多核计算性能,适... 目录1. 多核处理器及并行计算概念1.1 多核处理器架构概述1.2 并行计算的含义及重要性1.3 并

golang程序打包成脚本部署到Linux系统方式

《golang程序打包成脚本部署到Linux系统方式》Golang程序通过本地编译(设置GOOS为linux生成无后缀二进制文件),上传至Linux服务器后赋权执行,使用nohup命令实现后台运行,完... 目录本地编译golang程序上传Golang二进制文件到linux服务器总结本地编译Golang程序

Spring Boot spring-boot-maven-plugin 参数配置详解(最新推荐)

《SpringBootspring-boot-maven-plugin参数配置详解(最新推荐)》文章介绍了SpringBootMaven插件的5个核心目标(repackage、run、start... 目录一 spring-boot-maven-plugin 插件的5个Goals二 应用场景1 重新打包应用

Linux系统性能检测命令详解

《Linux系统性能检测命令详解》本文介绍了Linux系统常用的监控命令(如top、vmstat、iostat、htop等)及其参数功能,涵盖进程状态、内存使用、磁盘I/O、系统负载等多维度资源监控,... 目录toppsuptimevmstatIOStatiotopslabtophtopdstatnmon

Knife4j+Axios+Redis前后端分离架构下的 API 管理与会话方案(最新推荐)

《Knife4j+Axios+Redis前后端分离架构下的API管理与会话方案(最新推荐)》本文主要介绍了Swagger与Knife4j的配置要点、前后端对接方法以及分布式Session实现原理,... 目录一、Swagger 与 Knife4j 的深度理解及配置要点Knife4j 配置关键要点1.Spri