数字图像处理(实践篇)十九 漫水填充

2023-12-08 11:28

本文主要是介绍数字图像处理(实践篇)十九 漫水填充,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一 漫水填充算法--FloodFill

二 涉及的函数

三 实践


一 漫水填充算法--FloodFill

FloodFill漫水填充算法就是选中与种子点相连接的区域,利用指定颜色进行区域颜色填充。可以通过设置连通方式或像素的范围控制填充的效果。通常是用来标记或者分离图像的一部分,以便做进一步分析和处理。

二 涉及的函数

cv2.floodFill()函数原型如下:

cv2.floodFill(image, mask, seedPoint, newVal, loDiff=None, upDiff=None, flags=None)

输入:

image:【输入/输出】1或者3通道、 8bit或者浮点图像。仅当参数flags的FLOODFILL_MASK_ONLY标志位被设置时image不会被修改,否则的话,image会被修改。

mask:【输入/输出】 操作掩码,必须为单通道、8bit,且比原图image宽、高多2个像素。使用前必须先初始化。只有对于掩码层上对应为0的位置才能泛洪,所以掩码层初始化为0矩阵。

seedPoint:漫水填充的种子点,起始像素点。根据该点的像素判断决定和其相近颜色的像素点,是否被泛洪处理。

newVal:被填充的像素点的新像素值(B,G,R)。

loDiff:(loDiff1,loDiff2,loDiff3),添加进种子点区域条件的下界差值。例如,seed(B0,G0,R0),泛洪区域下界为(B0-loDiff1,G0-loDiff2,R0-loDiff3)。

upDiff:(upDiff1,upDiff2,upDiff3),添加进种子点区域条件的上界差值。例如,seed(B0,G0,R0),泛洪区域上界为(B0+upDiff1,G0+upDiff2,R0+upDiff3)。

flag:为泛洪算法的处理模式。

当为CV_FLOODFILL_FIXED_RANGE时,待处理的像素点与种子点作比较,在范围之内,则填充此像素 。 改变图像,填充newvalue。      

当为CV_FLOODFILL_MASK_ONLY 时,函数不填充原始图像iamge,而是填充掩码图像。不改变原图像,也就是newvalue参数失去作用,而是改变对应区域的掩码。

返回:

image:【输入/输出】

mask:【输入/输出】 操作掩码。

三 实践

实践①:不同的seedPoint

  • 代码
import numpy as np
import cv2
import matplotlib.pyplot as plt
def dealImg(img):b, g, r = cv2.split(img)img_rgb = cv2.merge([r, g, b])return img_rgb
def dealImageResult(img_path):im = cv2.imread(img_path)h, w = im.shape[:2]im1 = im.copy()im2 = im.copy()im3 = im.copy()im4 = im.copy()im5 = im.copy()mask1 = np.zeros([h+2, w+2], np.uint8)mask2 = np.zeros([h+2, w+2], np.uint8)mask3 = np.zeros([h+2, w+2], np.uint8)mask4 = np.zeros([h+2, w+2], np.uint8)mask5 = np.zeros([h+2, w+2], np.uint8)cv2.floodFill(im1,  mask1, (20, 20), (255, 255, 0), (100, 100, 50), (50, 50, 50), cv2.FLOODFILL_FIXED_RANGE)cv2.floodFill(im2,  mask2, (90, 80), (255, 255, 0), (100, 100, 50), (50, 50, 50), cv2.FLOODFILL_FIXED_RANGE)cv2.floodFill(im3,  mask3, (100, 150), (255, 255, 0), (100, 100, 50), (50, 50, 50), cv2.FLOODFILL_FIXED_RANGE)cv2.floodFill(im4,  mask4, (180, 180), (255, 255, 0), (100, 100, 50), (50, 50, 50), cv2.FLOODFILL_FIXED_RANGE)cv2.floodFill(im5,  mask5, (200, 190), (255, 255, 0), (100, 100, 50), (50, 50, 50), cv2.FLOODFILL_FIXED_RANGE)fig = plt.figure(figsize=(10, 10))im = dealImg(im)im1 = dealImg(im1)im2 = dealImg(im2)im3 = dealImg(im3)im4 = dealImg(im4)im5 = dealImg(im5)titles = ["img", "seedPoint=(20, 20)", "seedPoint=(40, 40)", "seedPoint=(60, 70)", "seedPoint=(100, 150)", "seedPoint=(200, 190)"]images = [im, im1, im2, im3, im4, im5]for i in range(6):plt.subplot(2, 3, i + 1), plt.imshow(images[i], "gray")plt.title("{}".format(titles[i]), fontsize=20, ha='center')plt.xticks([]), plt.yticks([])# plt.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=0.3, hspace=0)# plt.tight_layout()plt.show()fig.savefig('test_results.jpg', bbox_inches='tight')
if __name__ == '__main__':dealImageResult("4.jpeg")pass
  • 效果图

实践②:指定位置的填充

  • 代码
import numpy as np
import cv2
import matplotlib.pyplot as plt
def dealImg(img):b, g, r = cv2.split(img)img_rgb = cv2.merge([r, g, b])return img_rgb
def dealImageResult(img_path):im = cv2.imread(img_path)h, w = im.shape[:2]print(h, w)im1 = im.copy()im2 = im.copy()im3 = im.copy()mask1 = np.ones([h+2, w+2], np.uint8)mask1[0:100, 0:100] = 0mask2 = np.ones([h+2, w+2], np.uint8)mask2[0:200, 0:200] = 0mask3 = np.ones([h+2, w+2], np.uint8)mask3[0:w, 0:h] = 0cv2.floodFill(im1,  mask1, (20, 20), (255, 255, 0), (100, 100, 50), (50, 50, 50), cv2.FLOODFILL_FIXED_RANGE)cv2.floodFill(im2,  mask2, (20, 20), (255, 255, 0), (100, 100, 50), (50, 50, 50), cv2.FLOODFILL_FIXED_RANGE)cv2.floodFill(im3,  mask3, (20, 20), (255, 255, 0), (100, 100, 50), (50, 50, 50), cv2.FLOODFILL_FIXED_RANGE)fig = plt.figure(figsize=(10, 10))im = dealImg(im)im1 = dealImg(im1)im2 = dealImg(im2)im3 = dealImg(im3)titles = ["img", "mask1_result", "mask2_result", "mask3_result"]images = [im, im1, im2, im3]for i in range(4):plt.subplot(2, 2, i + 1), plt.imshow(images[i], "gray")plt.title("{}".format(titles[i]), fontsize=20, ha='center')plt.xticks([]), plt.yticks([])# plt.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=0.3, hspace=0)# plt.tight_layout()plt.show()fig.savefig('test_results.jpg', bbox_inches='tight')
if __name__ == '__main__':dealImageResult("4.jpeg")pass
  • 效果图

前文回顾

 入门篇目录

 数字图像处理(入门篇)一 图像的数字化与表示

 数字图像处理(入门篇)二 颜色空间

 数字图像处理(入门篇)三 灰度化

 数字图像处理(入门篇)四 像素关系

 数字图像处理(入门篇)五 图像数据预处理之颜色空间转换

 数字图像处理(入门篇)六 图像数据预处理之坐标变化

 数字图像处理(入门篇)七 图像数据预处理之灰度变化

 数字图像处理(入门篇)八 图像数据预处理之直方图

 数字图像处理(入门篇)九 图像数据预处理之滤波

 数字图像处理(入门篇)十 边缘检测

 数字图像处理(入门篇)十一 形态学处理

 数字图像处理(入门篇)十二 自适应阈值分割

 数字图像处理(入门篇)十三 仿射变换

 数字图像处理(入门篇)十四 透视变换

实践篇目录

数字图像处理(实践篇)一 将图像中的指定目标用bBox框起来吧!

数字图像处理(实践篇)二 画出图像中目标的轮廓

数字图像处理(实践篇)三 将两张图像按照指定比例融合

数字图像处理(实践篇)四 图像拼接-基于SIFT特征点和RANSAC方法

数字图像处理(实践篇)五 使用Grabcut算法进行物体分割

数字图像处理(实践篇)六 利用hough变换进行直线检测

数字图像处理(实践篇)七 利用霍夫变换进行圆环检测

数字图像处理(实践篇)八 Harris角点检测

数字图像处理(实践篇)九 基于边缘的模板匹配

数字图像处理(实践篇)十 图像质量检测

数字图像处理(实践篇)十一 图像中的条形码解析

数字图像处理(实践篇)十二 基于小波变换的图像降噪

数字图像处理(实践篇)十三 数据增强之给图像添加噪声!

数字图像处理(实践篇)十四 图像金字塔

数字图像处理(实践篇)十五 基于傅里叶变换的高通滤波和低通滤波

数字图像处理(实践篇)十六 基于分水岭算法的图像分割

数字图像处理(实践篇)十七 Shi-Tomasi 角点检测

数字图像处理(实践篇)十八 人脸检测

这篇关于数字图像处理(实践篇)十九 漫水填充的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/469674

相关文章

Java 的ArrayList集合底层实现与最佳实践

《Java的ArrayList集合底层实现与最佳实践》本文主要介绍了Java的ArrayList集合类的核心概念、底层实现、关键成员变量、初始化机制、容量演变、扩容机制、性能分析、核心方法源码解析、... 目录1. 核心概念与底层实现1.1 ArrayList 的本质1.1.1 底层数据结构JDK 1.7

JDK21对虚拟线程的几种用法实践指南

《JDK21对虚拟线程的几种用法实践指南》虚拟线程是Java中的一种轻量级线程,由JVM管理,特别适合于I/O密集型任务,:本文主要介绍JDK21对虚拟线程的几种用法,文中通过代码介绍的非常详细,... 目录一、参考官方文档二、什么是虚拟线程三、几种用法1、Thread.ofVirtual().start(

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础

springboot依靠security实现digest认证的实践

《springboot依靠security实现digest认证的实践》HTTP摘要认证通过加密参数(如nonce、response)验证身份,避免明文传输,但存在密码存储风险,相比基本认证更安全,却因... 目录概述参数Demopom.XML依赖Digest1Application.JavaMyPasswo

使用Java填充Word模板的操作指南

《使用Java填充Word模板的操作指南》本文介绍了Java填充Word模板的实现方法,包括文本、列表和复选框的填充,首先通过Word域功能设置模板变量,然后使用poi-tl、aspose-words... 目录前言一、设置word模板普通字段列表字段复选框二、代码1. 引入POM2. 模板放入项目3.代码

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

Java 结构化并发Structured Concurrency实践举例

《Java结构化并发StructuredConcurrency实践举例》Java21结构化并发通过作用域和任务句柄统一管理并发生命周期,解决线程泄漏与任务追踪问题,提升代码安全性和可观测性,其核心... 目录一、结构化并发的核心概念与设计目标二、结构化并发的核心组件(一)作用域(Scopes)(二)任务句柄

Java中的Schema校验技术与实践示例详解

《Java中的Schema校验技术与实践示例详解》本主题详细介绍了在Java环境下进行XMLSchema和JSONSchema校验的方法,包括使用JAXP、JAXB以及专门的JSON校验库等技术,本文... 目录1. XML和jsON的Schema校验概念1.1 XML和JSON校验的必要性1.2 Sche

SpringBoot集成WebService(wsdl)实践

《SpringBoot集成WebService(wsdl)实践》文章介绍了SpringBoot项目中通过缓存IWebService接口实现类的泛型入参类型,减少反射调用提升性能的实现方案,包含依赖配置... 目录pom.XML创建入口ApplicationContextUtils.JavaJacksonUt

MyCat分库分表的项目实践

《MyCat分库分表的项目实践》分库分表解决大数据量和高并发性能瓶颈,MyCat作为中间件支持分片、读写分离与事务处理,本文就来介绍一下MyCat分库分表的实践,感兴趣的可以了解一下... 目录一、为什么要分库分表?二、分库分表的常见方案三、MyCat简介四、MyCat分库分表深度解析1. 架构原理2. 分