Cloud Foundry中vmc tunnel与caldecott原理

2023-12-08 00:32

本文主要是介绍Cloud Foundry中vmc tunnel与caldecott原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        在Cloud Foundry中,用户可以vmc create-service创建一个service instance,但是常规情况下,用户不能手动地进一步对service instance进行设计。以MySQL为例,用户可以创建一个MySQL instance,但是一般情况下,用户不能直接对整个MySQL的database进行schema设计,或者进行增删改查的操作。对于MySQL service instance的内部操作,都是由部署在Cloud Foundry上的app应用程序来完成的。


        为了可以使得用户在Cloud Foundry外部,对该用户创建的service instance进行schema设计或者增删改查的操作,Cloud Foundry的指令客户端vmc通过vmc tunnel指令来实现。以MySQL为例,vmc tunnel最直接的功能就是:允许用户在Cloud Foundry外部的MySQL client对MySQL node上的service instance进行schema设计或者增删改查的操作。


       该文档主要基于Cloud Foundry v1版本,vmc版本为0.3.18 。


       以下是具体实现流程:


       上图为vmc与Cloud Foundry的Cloud Controller,DEA,MySQL node等组件的交互图。该图的应用背景为:已经创建完一个MySQL instance,需要通过vmc tunnel来完成用户对该MySQL instance的内部操作。以下为vmc tunnel指令执行过程中所涉及的操作。

       步骤1:用户通过vmc向Cloud Foundry部署一个app应用caldecott。vmc获取app应用的配置信息,并与该应用的程序代码发送给Cloud Foundry的Cloud Controller。

       步骤2:Cloud Controller接受到用户的vmc请求后,成功在DEA上部署应用caldecott,并启动该应用。

       步骤3:vmc发送绑定请求给Cloud Controller,将caldecott应用与需要执行内部操作的MySQL instance进行绑定。

       步骤4:Cloud Controller将该MySQL instance的credentials与该应用的脚本,程序代码放在一起重新打包,并在DEA中启动。


       以上4个步骤均为简单的vmc push以及vmc bind-service操作,了解的Cloud Foundry应用部署的开发者一定不会感到陌生。


       以下是vmc如何通过caldecott应用与MySQL instance进行交互。在介绍实现机制之前,先来了解一下caldecott这个应用程序的功能与框架。


       caldecott应用


      首先该caldecott应用是一个sinatra框架的应用。在功能上,主要分为两个部分:第一,接收vmc发送来的http请求,并从该应用的环境变量中获取绑定的service instance的信息,并将这些service instance的credentials返回给vmc;第二,接受vmc的caldecott client发送来的建立tunnel请求,本身作为一个caldecott server建立与caldecott client的连接之后,将client发送来的内容再发给mysql server。以下为caldecott应用程序的大部分ruby代码:

# add vcap specific stuff to Caldecott
class VcapHttpTunnel < Caldecott::Server::HttpTunnelget '/info' do{ "version" => '0.0.4' }.to_jsonenddef self.get_tunnelssuperendget '/services' doservices_env = ENV['VMC_SERVICES']return "no services env" if services_env.nil? or services_env.empty?services_envendget '/services/:service' do |service_name|services_env = ENV['VMC_SERVICES']not_found if services_env.nil?services = JSON.parse(services_env)service = services.find { |s| s["name"] == service_name }not_found if service.nil?service["options"].to_jsonend
endVcapHttpTunnel.run!(:port => port, :auth_token => ENV["CALDECOTT_AUTH"])

       紧接着步骤4,vmc通过应用caldecott操作MySQL instance:


       步骤5:vmc通过restful请求,向caldecott索取已绑定service instance的credentials信息。

       步骤6:caldecott从环境变量中读取service的credentials,并将其返回给vmc。

       步骤7:vmc在用户的机器上开辟一个端口,并使用该端口,caldecott的url,service instance的host以及port来创建一条tunnel。创建的发起者为caldecott::client,该连接的接受者为caldecott::server,也就是部署在DEA上的caldecott应用的第二个功能,如以上代码继承部分与最后一行。其中vmc端的创建连接代码如下:

def start_tunnel(local_port, conn_info, auth)@local_tunnel_thread = Thread.new doCaldecott::Client.start({:local_port => local_port,:tun_url => tunnel_url,:dst_host => conn_info['hostname'],:dst_port => conn_info['port'],:log_file => STDOUT,:log_level => ENV["VMC_TUNNEL_DEBUG"] || "ERROR",:auth_token => auth,:quiet => true})endat_exit { @local_tunnel_thread.kill }
end

       步骤8:caldecott应用作为一个caldecott::server,建立一条与MySQL server的TCPConnection。


      以上的8个步骤,实现了Cloud Foundry的外部用户通过vmc与部署在Cloud Foundry上的应用caldecott建立与MySQL server的连接。


      完成了以上的操作,当用户执行mysql指令时,执行“mysql --protocol=TCP --host=localhost --port=10000 --user=uQQMx1PDleAlh --password=p31HW4mHr7LVd d52a850c9721d4f30b1652fa438bbdc79”。其中10000为本机与caldecott创建tunnel的端口号,所以该请求会通过caldecott::client发给应用caldecott中的caldecott::server,而caldecott::server又会将请求发给MySQL server,最后由MySQL server解析执行并返回结果。



关于作者:

孙宏亮,DAOCLOUD软件工程师。两年来在云计算方面主要研究PaaS领域的相关知识与技术。坚信轻量级虚拟化容器的技术,会给PaaS领域带来深度影响,甚至决定未来PaaS技术的走向。


转载请注明出处。

这篇文档更多出于我本人的理解,肯定在一些地方存在不足和错误。希望本文能够对开始接触Cloud Foundry中service的人有些帮助,如果你对这方面感兴趣,并有更好的想法和建议,也请联系我。

我的邮箱:allen.sun@daocloud.io

新浪微博:@莲子弗如清 



这篇关于Cloud Foundry中vmc tunnel与caldecott原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/467870

相关文章

ShardingProxy读写分离之原理、配置与实践过程

《ShardingProxy读写分离之原理、配置与实践过程》ShardingProxy是ApacheShardingSphere的数据库中间件,通过三层架构实现读写分离,解决高并发场景下数据库性能瓶... 目录一、ShardingProxy技术定位与读写分离核心价值1.1 技术定位1.2 读写分离核心价值二

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

MyBatis-Plus 与 Spring Boot 集成原理实战示例

《MyBatis-Plus与SpringBoot集成原理实战示例》MyBatis-Plus通过自动配置与核心组件集成SpringBoot实现零配置,提供分页、逻辑删除等插件化功能,增强MyBa... 目录 一、MyBATis-Plus 简介 二、集成方式(Spring Boot)1. 引入依赖 三、核心机制

redis和redission分布式锁原理及区别说明

《redis和redission分布式锁原理及区别说明》文章对比了synchronized、乐观锁、Redis分布式锁及Redission锁的原理与区别,指出在集群环境下synchronized失效,... 目录Redis和redission分布式锁原理及区别1、有的同伴想到了synchronized关键字

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、

setsid 命令工作原理和使用案例介绍

《setsid命令工作原理和使用案例介绍》setsid命令在Linux中创建独立会话,使进程脱离终端运行,适用于守护进程和后台任务,通过重定向输出和确保权限,可有效管理长时间运行的进程,本文给大家介... 目录setsid 命令介绍和使用案例基本介绍基本语法主要特点命令参数使用案例1. 在后台运行命令2.

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、