(13)幂模m与逐次平方法

2023-12-07 20:32
文章标签 方法 13 逐次 幂模

本文主要是介绍(13)幂模m与逐次平方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

逐次平方法

如何计算

5 100 000 000 000 000 ( m o d 12 830 603 ) 5^{100\ 000\ 000\ 000\ 000}(\mod 12\ 830\ 603) 5100 000 000 000 000(mod12 830 603)

呢?如果12830603是素数,你会设法使用费马小定理,即使不是素数,也可以利用欧拉公式。事实上, 12 830 603 = 3571 ⋅ 3593 12\ 830\ 603=3571\cdot3593 12 830 603=35713593

ϕ ( 12 830 603 ) = ϕ ( 3571 ) ⋅ ϕ ( 3593 ) = 3570 ⋅ 3592 = 12 823 440 \phi(12\ 830\ 603)=\phi(3571)\cdot\phi(3593)=3570\cdot3592=12\ 823\ 440 ϕ(12 830 603)=ϕ(3571)ϕ(3593)=35703592=12 823 440

欧拉公式告诉我们,对任何a与m,若 g c d ( a , m ) = 1 gcd(a,m)=1 gcd(a,m)=1,则

a ϕ ( m ) ≡ 1 ( m o d m ) a^{\phi(m)}\equiv1(\mod m) aϕ(m)1(modm)

所以可利用事实

100 000 000 000 000 = 7 798 219 ⋅ 12 823 440 + 6 546 640 100\ 000\ 000\ 000\ 000=7\ 798\ 219\cdot12\ 823\ 440+6\ 546\ 640 100 000 000 000 000=7 798 21912 823 440+6 546 640

来“简化”我们的问题:

5 100 000 000 000 000 = ( 5 12 823 440 ) 7 798 219 ⋅ 5 6 546 640 5^{100\ 000\ 000\ 000\ 000}=(5^{12\ 823\ 440})^{7\ 798\ 219}\cdot5^{6\ 546\ 640} 5100 000 000 000 000=(512 823 440)7 798 21956 546 640
≡ 5 6 546 640 ( m o d 12 830 603 ) \equiv5^{6\ 546\ 640}(\mod 12\ 830\ 603) 56 546 640(mod12 830 603)

现在“只”需计算5的 6 546 640 6\ 546\ 640 6 546 640次幂,然后用模 12 930 603 12\ 930\ 603 12 930 603进行简化。不幸的是,数 5 6 546 640 5^{6\ 546\ 640} 56 546 640有400多万位数,即使用计算机计算也是很困难的。

用来计算 a k ( m o d m ) a^k(\mod m) ak(modm)的一个巧妙想法叫做逐次平分法

逐次平分计算 a k ( m o d m ) a^k(\mod m) ak(modm)

1.将k表成2的幂次和:

k = u 0 + u 1 ⋅ 2 + u 3 ⋅ 2 2 + ⋯ + u r ⋅ 2 r k=u_0+u_1\cdot 2+u_3\cdot2^2+\cdots+u_r\cdot2^r k=u0+u12+u322++ur2r

其中每个 u i u_i ui是0或1。(这种表示式叫做k的二进制展开。)

2.使用逐次平分法制作模m的a的幂次表。

a 1 ≡ A 0 ( m o d m ) a^1\equiv A_0(\mod m) a1A0(modm)
a 2 ≡ ( a 1 ) 2 ≡ A 0 2 ≡ A 1 ( m o d m ) a^2\equiv (a^1)^2\equiv A_0^2\equiv A_1(\mod m) a2(a1)2A02A1(modm)
a 4 ≡ ( a 2 ) 2 ≡ A 1 2 ≡ A 2 ( m o d m ) a^4\equiv (a^2)^2\equiv A_1^2\equiv A_2(\mod m) a4(a2)2A12A2(modm)
a 8 ≡ ( a 4 ) 2 ≡ A 2 2 ≡ A 3 ( m o d m ) a^8\equiv (a^4)^2\equiv A_2^2\equiv A_3(\mod m) a8(a4)2A22A3(modm)
⋯ \cdots
a 2 r ≡ ( a 2 r − 1 ) 2 ≡ A r − 1 2 ≡ A r ( m o d m ) a^{2r}\equiv (a^{2r-1})^2\equiv A_{r-1}^2\equiv A_r(\mod m) a2r(a2r1)2Ar12Ar(modm)

注意要计算表的每一行,仅需要取前一行最末的数,平方它然后用模m简化。也注意到表有 r + 1 r+1 r+1行,其中r是第1步中k的二进制展开式中2的最高指数。

3.乘积

A 0 u 0 ⋅ A 1 u 1 ⋅ A 2 u 2 ⋯ A r u r ( m o d m ) A_0^{u_0}\cdot A_1^{u_1}\cdot A_2^{u_2}\cdots A_r^{u_r}(\mod m) A0u0A1u1A2u2Arur(modm)

同余于 a k ( m o d m ) a^k(\mod m) ak(modm)。注意到所有 u i u_i ui是0或1,因此这个数实际上是 u i u_i ui等于1的那些 A i A_i Ai的乘积。
证明

a k = a u 0 + u 1 ∗ 2 + u 2 ∗ 2 2 + ⋯ + u r ∗ 2 r a^k=a^{u_0+u_1*2+u_2*2^2+\cdots+u_r*2^r} ak=au0+u12+u222++ur2r
= a u 0 ⋅ ( a 2 ) u 1 ⋅ ( a 2 2 ) u 2 ⋯ ( a 2 r ) u r =a^{u_0}\cdot (a^2)^{u_1}\cdot (a^{2^2})^{u_2}\cdots(a^{2^r})^{u_r} =au0(a2)u1(a22)u2(a2r)ur
= A 0 u 0 ⋅ A 1 u 1 ⋅ A 2 u 2 ⋯ A r u r ( m o d m ) =A_0^{u_0}\cdot A_1^{u_1}\cdot A_2^{u_2}\cdots A_r^{u_r}(\mod m) =A0u0A1u1A2u2Arur(modm)

代码实现

int power(int e,int n) {//无模运算if (e == 1 || n == 0)return 1;return n % 2 == 1 ? e * power(e*e, n / 2) : power(e*e, n / 2);
}
int power(int e, int n, int m) {//加入了取模运算if (e == 1 || n == 0)return 1;return n % 2 == 1 ? (e * power((e*e)%m, n / 2, m)) % m : power((e*e)%m, n / 2, m);
}
int power(int e, int n, int m) {//位运算优化if (e == 1 || n == 0)return 1;return n & 1 ? (e * power((e*e) % m, n >> 1, m)) % m : power((e*e) % m, n >> 1, m);
}

快速证明合数

之前我们要证明一个数是合数,需要试着用不超过 n \sqrt{n} n 的每个数去除,查看能否找到因数。这样显然效率很低。
有了费马小定理与逐次平方法,我们就有办法快速的证明一个数是合数,而不用求出任何它的因数。
假设我们想证明m为合数。
(1)我们取一个小于m的数a。
(2)计算 g c d ( m , a ) gcd(m,a) gcd(m,a),如果 g c d ( m , a ) ≠ 1 gcd(m,a)\not=1 gcd(m,a)=1那么说明我们已经找到了m的一个因数,得证。
(3)如果 g c d ( m , a ) = 1 gcd(m,a)=1 gcd(m,a)=1,那么计算

a m − 1 ( m o d m ) a^{m-1}(\mod m) am1(modm)

如果m是素数那么一定有 a m − 1 ≡ 1 ( m o d m ) a^{m-1}\equiv 1(\mod m) am11(modm),所以如果 a m − 1 ≡ 1 ( m o d m ) a^{m-1}\equiv1(\mod m) am11(modm),那么m一定不是素数即是个合数,这样我们就不用求任何因数证明了一个数是合数。
其中 a m − 1 ( m o d m ) a^{m-1}(\mod m) am1(modm)可以通过逐次平方法快速求解。

我们可以通过改变a的值,如 a = 5 , 7 , 11 ⋯ a=5,7,11\cdots a=5,7,11发现m使 a m − 1 ≡ 1 ( m o d m ) a^{m-1}\equiv1(\mod m) am11(modm)是不是可以断言m是一个素数呢?很有可能,可惜不一定。

注意通过费马小定理不能结论性的证明一个素数,因为的确存在合数使得任意a, a m − 1 ≡ 1 ( m o d m ) a^{m-1}\equiv 1(\mod m) am11(modm)这样的m被称为卡米歇尔数。最小的卡米歇尔数是561,之后我们会进一步研究卡米歇尔数。

代码实现

#include<iostream>
using namespace std;int n;int Eucild(int a, int b)
{int r = a % b;while (r){a = b;b = r;r = a % b;}return b;
}int power(int e, int n, int m) {cout << e << ' ' << n << ' ' << m << endl;if (e == 1 || n == 0)return 1;return n & 1 ? (e * power((e*e) % m, n >> 1, m)) % m : power((e*e) % m, n >> 1, m);
}bool isCombinde(int n) {int a = 2;if (n < a)return 0;int m = Eucild(n, a);if (m != 1)return 1;else if (power(a, n - 1, n) != 1)return 1;else return 0;
}int main() {cin >> n;if (isCombinde(n))cout << n << "一定是合数" << endl;else cout << n << "可能是素数" << endl;system("pause");return 0;
}

这篇关于(13)幂模m与逐次平方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/467272

相关文章

Java中读取YAML文件配置信息常见问题及解决方法

《Java中读取YAML文件配置信息常见问题及解决方法》:本文主要介绍Java中读取YAML文件配置信息常见问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录1 使用Spring Boot的@ConfigurationProperties2. 使用@Valu

Java 方法重载Overload常见误区及注意事项

《Java方法重载Overload常见误区及注意事项》Java方法重载允许同一类中同名方法通过参数类型、数量、顺序差异实现功能扩展,提升代码灵活性,核心条件为参数列表不同,不涉及返回类型、访问修饰符... 目录Java 方法重载(Overload)详解一、方法重载的核心条件二、构成方法重载的具体情况三、不构

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

在Linux中改变echo输出颜色的实现方法

《在Linux中改变echo输出颜色的实现方法》在Linux系统的命令行环境下,为了使输出信息更加清晰、突出,便于用户快速识别和区分不同类型的信息,常常需要改变echo命令的输出颜色,所以本文给大家介... 目python录在linux中改变echo输出颜色的方法技术背景实现步骤使用ANSI转义码使用tpu

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Spring Boot中WebSocket常用使用方法详解

《SpringBoot中WebSocket常用使用方法详解》本文从WebSocket的基础概念出发,详细介绍了SpringBoot集成WebSocket的步骤,并重点讲解了常用的使用方法,包括简单消... 目录一、WebSocket基础概念1.1 什么是WebSocket1.2 WebSocket与HTTP

SQL Server配置管理器无法打开的四种解决方法

《SQLServer配置管理器无法打开的四种解决方法》本文总结了SQLServer配置管理器无法打开的四种解决方法,文中通过图文示例介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录方法一:桌面图标进入方法二:运行窗口进入检查版本号对照表php方法三:查找文件路径方法四:检查 S