Redis——某马点评day02——商铺缓存

2023-12-07 15:30

本文主要是介绍Redis——某马点评day02——商铺缓存,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

什么是缓存

添加Redis缓存

添加商铺缓存

Controller层中

    /*** 根据id查询商铺信息* @param id 商铺id* @return 商铺详情数据*/@GetMapping("/{id}")public Result queryShopById(@PathVariable("id") Long id) {return shopService.queryById(id);}

Service层中

 */
@Service
public class ShopServiceImpl extends ServiceImpl<ShopMapper, Shop> implements IShopService {@Resourceprivate StringRedisTemplate stringRedisTemplate;@Overridepublic Result queryById(Long id) {String key="cache:shop:" + id;//1.从Redis查询缓存String shopJson = stringRedisTemplate.opsForValue().get(key);//2.判断是否存在if (StrUtil.isNotBlank(shopJson)) {//3.存在,直接返回Shop shop = JSONUtil.toBean(shopJson, Shop.class);return Result.ok(shop);}//4.不存在,根据id查询数据库Shop shop = getById(id);if (shop==null) {//5.不存在,返回错误return Result.fail("店铺不存在");}//6.存在,写入RedisstringRedisTemplate.opsForValue().set(key,JSONUtil.toJsonStr(shop));//7.返回return Result.ok(shop);}
}

练习添加店铺类型缓存

Controller层中

@RestController
@RequestMapping("/shop-type")
public class ShopTypeController {@Resourceprivate IShopTypeService typeService;@GetMapping("list")public Result queryTypeList() {return typeService.queryTypeList();}
}

Service层中

    @Overridepublic Result queryTypeList() {String key="cache:shopType";//1.从Redis查询缓存String shopType = stringRedisTemplate.opsForValue().get(key);//2.判断是否存在if (StrUtil.isNotBlank(shopType)) {//3.存在,直接返回List<ShopType> typeList = JSONUtil.toList(shopType, ShopType.class);return Result.ok(typeList);}//4.不存在,查询数据库List<ShopType> typeList = query().orderByAsc("sort").list();//5.存在,写入RedisstringRedisTemplate.opsForValue().set(key,JSONUtil.toJsonStr(typeList));//7.返回return Result.ok(typeList);}

缓存更新策略

 通常选择的方案都是第一种

单体系统可以通过@Transactional注解完成事务。

通常是先操作数据库,再删除缓存,出现问题的几率极小。

 

 实现商铺缓存和数据库的双写一致

第一个地方,写入Redis时加上超时时间。 

  //6.存在,写入RedisstringRedisTemplate.opsForValue().set(key,JSONUtil.toJsonStr(shop),CACHE_SHOP_TTL, TimeUnit.MINUTES);

 第二个地方

controller中

    /*** 更新商铺信息* @param shop 商铺数据* @return 无*/@PutMappingpublic Result updateShop(@RequestBody Shop shop) {return shopService.update(shop);}

service中

    @Overridepublic Result update(Shop shop) {Long id = shop.getId();if(id==null){return Result.fail("店铺id不能为空");}//1.更新数据库updateById(shop);//2.删除缓存stringRedisTemplate.delete(CACHE_SHOP_KEY+id);return null;}

缓存穿透

布隆过滤器的实现不是真的存储数据,而是用某种Hash算法计算之后用二进制压缩之类的方法保存是否存在。但是,也有可能多个数据hash值相同导致错误结果。

编码解决商铺查询的缓存穿透(缓存空对象做法)

 代码修改

    @Overridepublic Result queryById(Long id) {String key=CACHE_SHOP_KEY+ id;//1.从Redis查询缓存String shopJson = stringRedisTemplate.opsForValue().get(key);//2.判断是否存在if (StrUtil.isNotBlank(shopJson)) {//3.存在,直接返回Shop shop = JSONUtil.toBean(shopJson, Shop.class);return Result.ok(shop);}//判断命中的是否是空值if(shopJson!=null){//返回一个错误信息return Result.fail("店铺不存在");}//4.不存在,根据id查询数据库Shop shop = getById(id);if (shop==null) {//将空值写入RedisstringRedisTemplate.opsForValue().set(key,"",CACHE_NULL_TTL, TimeUnit.MINUTES);//5.不存在,返回错误return Result.fail("店铺不存在");}//6.存在,写入RedisstringRedisTemplate.opsForValue().set(key,JSONUtil.toJsonStr(shop),CACHE_SHOP_TTL, TimeUnit.MINUTES);//7.返回return Result.ok(shop);}

 限流可以用sentinel实现.

缓存雪崩

宕机时降级限流也是用sentinel实现。

nginx缓存也是一级缓存.

tmd,一直在说springcloud里面有讲。

缓存击穿

常见解决方案

这里可以参考一下redisson的源码设计思路,设计一个监听通知机制! 

逻辑过期解决方案不会设置ttl过期时间,而是新增一个exprie字段,从redis里面查询发现是过期数据时就需要加锁开启一个新线程去更新缓存,然后直接返回旧数据。有别的线程来获取锁失败时说明已经有线程在进行更新,所以就直接返回过期数据,避免了过多线程等待锁。

 

利用互斥锁解决缓存击穿问题(重点)

这里的锁不能用lock和synchronized进行互斥实现,这两个会一直等待.这里用到Redis的一个命令setnx, 这个是一旦设置之后就不能修改,只能删除,但是如果因为意外原因导致迟迟不能删除会有大问题,所以这里会给锁设置一个有效期.

 代码修改

@Service
public class ShopServiceImpl extends ServiceImpl<ShopMapper, Shop> implements IShopService {@Resourceprivate StringRedisTemplate stringRedisTemplate;@Overridepublic Result queryById(Long id) {//缓存穿透//Shop shop=queryWithPassThrouh(id);//互斥锁解决缓存击穿Shop shop = queryWithMutex(id);if(shop==null){return Result.fail("店铺不存在!");}//7.返回return Result.ok(shop);}public Shop queryWithMutex(Long id){String key=CACHE_SHOP_KEY+ id;//1.从Redis查询缓存String shopJson = stringRedisTemplate.opsForValue().get(key);//2.判断是否存在if (StrUtil.isNotBlank(shopJson)) {//3.存在,直接返回return JSONUtil.toBean(shopJson, Shop.class);}//判断命中的是否是空值if(shopJson!=null){//返回一个错误信息return null;}//4.实现缓存重建//4.1获取互斥锁String lockkey="lock:shop:"+id;Shop shop = null;try {boolean isLock = tryLock(lockkey);//4.2判断是否获取成功if(!isLock){//4.3失败,休眠并重试Thread.sleep(50);return  queryWithMutex(id);   //这里有可能会出现栈溢出的情况。}//获取成功之后应该再次检查缓存是否存在,有可能别的线程已经重建完了缓存,所以这里就无需再重建缓存shopJson = stringRedisTemplate.opsForValue().get(key);//再次判断是否存在if (StrUtil.isNotBlank(shopJson)) {//存在,直接返回return JSONUtil.toBean(shopJson, Shop.class);}//4.4根据id查询数据库shop = getById(id);//模拟重建的延时Thread.sleep(200);if (shop==null) {//将空值写入RedisstringRedisTemplate.opsForValue().set(key,"",CACHE_NULL_TTL, TimeUnit.MINUTES);//5.不存在,返回错误return shop;}//6.存在,写入RedisstringRedisTemplate.opsForValue().set(key,JSONUtil.toJsonStr(shop),CACHE_SHOP_TTL, TimeUnit.MINUTES);} catch (InterruptedException e) {throw new RuntimeException(e);} finally {//7.释放互斥锁unlock(lockkey);}//8.返回return shop;}public Shop queryWithPassThrouh(Long id){String key=CACHE_SHOP_KEY+ id;//1.从Redis查询缓存String shopJson = stringRedisTemplate.opsForValue().get(key);//2.判断是否存在if (StrUtil.isNotBlank(shopJson)) {//3.存在,直接返回Shop shop = JSONUtil.toBean(shopJson, Shop.class);return shop;}//判断命中的是否是空值if(shopJson!=null){//返回一个错误信息return null;}//4.不存在,根据id查询数据库Shop shop = getById(id);if (shop==null) {//将空值写入RedisstringRedisTemplate.opsForValue().set(key,"",CACHE_NULL_TTL, TimeUnit.MINUTES);//5.不存在,返回错误return shop;}//6.存在,写入RedisstringRedisTemplate.opsForValue().set(key,JSONUtil.toJsonStr(shop),CACHE_SHOP_TTL, TimeUnit.MINUTES);//7.返回return shop;}private boolean tryLock(String key){Boolean flag = stringRedisTemplate.opsForValue().setIfAbsent(key, "1", 10, TimeUnit.SECONDS);return BooleanUtil.isTrue(flag);}private void unlock(String key){stringRedisTemplate.delete(key);}@Overridepublic Result update(Shop shop) {Long id = shop.getId();if(id==null){return Result.fail("店铺id不能为空");}//1.更新数据库updateById(shop);//2.删除缓存stringRedisTemplate.delete(CACHE_SHOP_KEY+id);return null;}
}

这里可以上Jmeter进行压测,上100个线程进行测试

但是最终实际只查询了一次数据库. 

利用逻辑过期解决缓存击穿问题(重点)

 为了能增加一个逻辑过期时间的字段,新建一个对象

@Data
public class RedisData {private LocalDateTime expireTime;private Object data;
}

代码修改

@Service
public class ShopServiceImpl extends ServiceImpl<ShopMapper, Shop> implements IShopService {@Resourceprivate StringRedisTemplate stringRedisTemplate;@Overridepublic Result queryById(Long id) {//缓存穿透//Shop shop=queryWithPassThrouh(id);//互斥锁解决缓存击穿
//        Shop shop = queryWithMutex(id);//逻辑过期解决缓存击穿问题Shop shop = queryWithLogicalExpire(id);if(shop==null){return Result.fail("店铺不存在!");}//7.返回return Result.ok(shop);}private static final ExecutorService CACHE_REBUILD_EXECUTOR= Executors.newFixedThreadPool(10);public Shop queryWithLogicalExpire(Long id){String key=CACHE_SHOP_KEY+ id;//1.从Redis查询缓存String shopJson = stringRedisTemplate.opsForValue().get(key);//2.判断是否存在if (StrUtil.isBlank(shopJson)) {//3.存在,直接返回nullreturn null;}//4.命中,需要先把json反序列化为对象RedisData redisData = JSONUtil.toBean(shopJson, RedisData.class);Shop shop = JSONUtil.toBean((JSONObject)redisData.getData(), Shop.class);LocalDateTime expireTime = redisData.getExpireTime();//5.判断是否过期if(expireTime.isAfter(LocalDateTime.now())){//5.1未过期,直接返回店铺信息return shop;}//5.2已过期,需要缓存重建//6.缓存重建//6.1获取互斥锁String lockKey=LOCK_SHOP_KEY+id;boolean isLock = tryLock(lockKey);//6.2判断是否获取锁成功if(isLock){//这里应该再次检测缓存是否过期,做双重判断,如果没过期就不需重建了,因为可能别的线程已经重建了shopJson = stringRedisTemplate.opsForValue().get(key);redisData = JSONUtil.toBean(shopJson, RedisData.class);expireTime = redisData.getExpireTime();if(expireTime.isAfter(LocalDateTime.now())){//返回前先释放锁unlock(lockKey);//5.1未过期,直接返回店铺信息return shop;}//6.3成功,开启独立线程,实现缓存重建CACHE_REBUILD_EXECUTOR.submit(()->{try {//重建缓存this.saveShop2Redis(id,20L);} catch (Exception e) {throw new RuntimeException(e);} finally {//释放锁unlock(lockKey);}});}//6.4失败,返回过期商铺信息。return shop;}public Shop queryWithMutex(Long id){String key=CACHE_SHOP_KEY+ id;//1.从Redis查询缓存String shopJson = stringRedisTemplate.opsForValue().get(key);//2.判断是否存在if (StrUtil.isNotBlank(shopJson)) {//3.存在,直接返回return JSONUtil.toBean(shopJson, Shop.class);}//判断命中的是否是空值if(shopJson!=null){//返回一个错误信息return null;}//4.实现缓存重建//4.1获取互斥锁String lockkey="lock:shop:"+id;Shop shop = null;try {boolean isLock = tryLock(lockkey);//4.2判断是否获取成功if(!isLock){//4.3失败,休眠并重试Thread.sleep(50);return  queryWithMutex(id);   //这里有可能会出现栈溢出的情况。}//获取成功之后应该再次检查缓存是否存在,有可能别的线程已经重建完了缓存,所以这里就无需再重建缓存shopJson = stringRedisTemplate.opsForValue().get(key);//再次判断是否存在if (StrUtil.isNotBlank(shopJson)) {//存在,直接返回return JSONUtil.toBean(shopJson, Shop.class);}//4.4根据id查询数据库shop = getById(id);//模拟重建的延时//Thread.sleep(200);if (shop==null) {//将空值写入RedisstringRedisTemplate.opsForValue().set(key,"",CACHE_NULL_TTL, TimeUnit.MINUTES);//5.不存在,返回错误return shop;}//6.存在,写入RedisstringRedisTemplate.opsForValue().set(key,JSONUtil.toJsonStr(shop),CACHE_SHOP_TTL, TimeUnit.MINUTES);} catch (InterruptedException e) {throw new RuntimeException(e);} finally {//7.释放互斥锁unlock(lockkey);}//8.返回return shop;}public Shop queryWithPassThrouh(Long id){String key=CACHE_SHOP_KEY+ id;//1.从Redis查询缓存String shopJson = stringRedisTemplate.opsForValue().get(key);//2.判断是否存在if (StrUtil.isNotBlank(shopJson)) {//3.存在,直接返回Shop shop = JSONUtil.toBean(shopJson, Shop.class);return shop;}//判断命中的是否是空值if(shopJson!=null){//返回一个错误信息return null;}//4.不存在,根据id查询数据库Shop shop = getById(id);if (shop==null) {//将空值写入RedisstringRedisTemplate.opsForValue().set(key,"",CACHE_NULL_TTL, TimeUnit.MINUTES);//5.不存在,返回错误return shop;}//6.存在,写入RedisstringRedisTemplate.opsForValue().set(key,JSONUtil.toJsonStr(shop),CACHE_SHOP_TTL, TimeUnit.MINUTES);//7.返回return shop;}private boolean tryLock(String key){Boolean flag = stringRedisTemplate.opsForValue().setIfAbsent(key, "1", 10, TimeUnit.SECONDS);return BooleanUtil.isTrue(flag);}private void unlock(String key){stringRedisTemplate.delete(key);}public void saveShop2Redis(Long id,Long expireSeconds) throws InterruptedException {//1.查询店铺数据Shop shop = getById(id);//模拟延时
//        Thread.sleep(200);//2.封装逻辑过期时间RedisData redisData = new RedisData();redisData.setData(shop);redisData.setExpireTime(LocalDateTime.now().plusSeconds(expireSeconds));//3.写入RedisstringRedisTemplate.opsForValue().set(CACHE_SHOP_KEY+id,JSONUtil.toJsonStr(redisData));}@Overridepublic Result update(Shop shop) {Long id = shop.getId();if(id==null){return Result.fail("店铺id不能为空");}//1.更新数据库updateById(shop);//2.删除缓存stringRedisTemplate.delete(CACHE_SHOP_KEY+id);return null;}
}

缓存工具封装(重点)

封装工具类里用到的实体

@Data
public class RedisData {private LocalDateTime expireTime;private Object data;
}

工具类代码

@Slf4j
@Component
public class CacheClient {@Resourceprivate StringRedisTemplate stringRedisTemplate;String LOCK_SHOP_KEY="lock:shop:";public CacheClient(StringRedisTemplate stringRedisTemplate) {this.stringRedisTemplate = stringRedisTemplate;}public  void set(String key, Object value, Long time, TimeUnit timeUnit){stringRedisTemplate.opsForValue().set(key, JSONUtil.toJsonStr(value),time,timeUnit);}public  void setWithLogicalExpire(String key, Object value, Long time, TimeUnit timeUnit){//设置逻辑过期RedisData redisData = new RedisData();redisData.setData(value);redisData.setExpireTime(LocalDateTime.now().plusSeconds(timeUnit.toSeconds(time)));//写入RedisstringRedisTemplate.opsForValue().set(key, JSONUtil.toJsonStr(redisData));}public <R,ID> R queryWithPassThrough(String keyPrefix, ID id, Class<R> type, Function<ID,R>dbFallback, Long time, TimeUnit timeUnit){String key=keyPrefix+id;//1.从Redis查询缓存String json = stringRedisTemplate.opsForValue().get(key);//2.判断是否存在if (StrUtil.isNotBlank(json)) {//3.存在,直接返回return  JSONUtil.toBean(json, type);}//判断命中的是否是空值if(json!=null){//返回一个错误信息return null;}//4.不存在,根据id查询数据库R r=dbFallback.apply(id);//5.不存在,返回错误if (r==null) {//将空值写入RedisstringRedisTemplate.opsForValue().set(key,"",2L, TimeUnit.MINUTES);return null;}//6.存在,写入Redisthis.set(key,r,time,timeUnit);//7.返回return r;}private static final ExecutorService CACHE_REBUILD_EXECUTOR= Executors.newFixedThreadPool(10);public <R,ID> R queryWithLogicalExpire(String keyPrefix, ID id, Class<R> type, Function<ID,R>dbFallback, Long time, TimeUnit timeUnit){String key=keyPrefix+ id;//1.从Redis查询缓存String json = stringRedisTemplate.opsForValue().get(key);//2.判断是否存在if (StrUtil.isBlank(json)) {//3.存在,直接返回nullreturn null;}//4.命中,需要先把json反序列化为对象RedisData redisData = JSONUtil.toBean(json, RedisData.class);R r = JSONUtil.toBean((JSONObject)redisData.getData(), type);LocalDateTime expireTime = redisData.getExpireTime();//5.判断是否过期if(expireTime.isAfter(LocalDateTime.now())){//5.1未过期,直接返回店铺信息return r;}//5.2已过期,需要缓存重建//6.缓存重建//6.1获取互斥锁String lockKey=LOCK_SHOP_KEY+id;boolean isLock = tryLock(lockKey);//6.2判断是否获取锁成功if(isLock){//这里应该再次检测缓存是否过期,做双重判断,如果没过期就不需重建了,因为可能别的线程已经重建了json = stringRedisTemplate.opsForValue().get(key);redisData = JSONUtil.toBean(json, RedisData.class);r = JSONUtil.toBean((JSONObject)redisData.getData(), type);expireTime = redisData.getExpireTime();if(expireTime.isAfter(LocalDateTime.now())){//返回前先释放锁unlock(lockKey);//5.1未过期,直接返回店铺信息return r;}//6.3成功,开启独立线程,实现缓存重建CACHE_REBUILD_EXECUTOR.submit(()->{try {//重建缓存//查询数据库R r1 = dbFallback.apply(id);//写入Redisthis.setWithLogicalExpire(key,r1,time,timeUnit);} catch (Exception e) {throw new RuntimeException(e);} finally {//释放锁unlock(lockKey);}});}//6.4失败,返回过期信息。return r;}private boolean tryLock(String key){Boolean flag = stringRedisTemplate.opsForValue().setIfAbsent(key, "1", 10, TimeUnit.SECONDS);return BooleanUtil.isTrue(flag);}private void unlock(String key){stringRedisTemplate.delete(key);}
}

Service层修改后代码

里面有缓存穿透的调用,也有缓存击穿的调用.

@Service
public class ShopServiceImpl extends ServiceImpl<ShopMapper, Shop> implements IShopService {@Resourceprivate StringRedisTemplate stringRedisTemplate;@Resourceprivate CacheClient cacheClient;@Overridepublic Result queryById(Long id) {//缓存穿透Shop shop=cacheClient.queryWithPassThrough(CACHE_SHOP_KEY,id, Shop.class,id2->getById(id2),CACHE_SHOP_TTL,TimeUnit.MINUTES);//Shop shop=cacheClient.queryWithPassThrough(CACHE_SHOP_KEY,id, Shop.class,this::getById,,CACHE_SHOP_TTL,TimeUnit.MINUTES);//互斥锁解决缓存击穿//Shop shop = queryWithMutex(id);//逻辑过期解决缓存击穿问题
//        Shop shop = cacheClient
//                .queryWithLogicalExpire(CACHE_SHOP_KEY,id,Shop.class,this::getById,CACHE_SHOP_TTL,TimeUnit.SECONDS);if(shop==null){return Result.fail("店铺不存在!");}//7.返回return Result.ok(shop);}@Overridepublic Result update(Shop shop) {Long id = shop.getId();if(id==null){return Result.fail("店铺id不能为空");}//1.更新数据库updateById(shop);//2.删除缓存stringRedisTemplate.delete(CACHE_SHOP_KEY+id);return null;}
}

内容总结:

去看文档资料里面xmind文档,那个里面总结的很好。

这篇关于Redis——某马点评day02——商铺缓存的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/466382

相关文章

Redis指南及6.2.x版本安装过程

《Redis指南及6.2.x版本安装过程》Redis是完全开源免费的,遵守BSD协议,是一个高性能(NOSQL)的key-value数据库,Redis是一个开源的使用ANSIC语言编写、支持网络、... 目录概述Redis特点Redis应用场景缓存缓存分布式会话分布式锁社交网络最新列表Redis各版本介绍旧

Java如何从Redis中批量读取数据

《Java如何从Redis中批量读取数据》:本文主要介绍Java如何从Redis中批量读取数据的情况,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一.背景概述二.分析与实现三.发现问题与屡次改进3.1.QPS过高而且波动很大3.2.程序中断,抛异常3.3.内存消

Redis中的Lettuce使用详解

《Redis中的Lettuce使用详解》Lettuce是一个高级的、线程安全的Redis客户端,用于与Redis数据库交互,Lettuce是一个功能强大、使用方便的Redis客户端,适用于各种规模的J... 目录简介特点连接池连接池特点连接池管理连接池优势连接池配置参数监控常用监控工具通过JMX监控通过Pr

Java实现本地缓存的常用方案介绍

《Java实现本地缓存的常用方案介绍》本地缓存的代表技术主要有HashMap,GuavaCache,Caffeine和Encahche,这篇文章主要来和大家聊聊java利用这些技术分别实现本地缓存的方... 目录本地缓存实现方式HashMapConcurrentHashMapGuava CacheCaffe

如何更改pycharm缓存路径和虚拟内存分页文件位置(c盘爆红)

《如何更改pycharm缓存路径和虚拟内存分页文件位置(c盘爆红)》:本文主要介绍如何更改pycharm缓存路径和虚拟内存分页文件位置(c盘爆红)问题,具有很好的参考价值,希望对大家有所帮助,如有... 目录先在你打算存放的地方建四个文件夹更改这四个路径就可以修改默认虚拟内存分页js文件的位置接下来从高级-

PyCharm如何更改缓存位置

《PyCharm如何更改缓存位置》:本文主要介绍PyCharm如何更改缓存位置的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录PyCharm更改缓存位置1.打开PyCharm的安装编程目录2.将config、sjsystem、plugins和log的路径

python操作redis基础

《python操作redis基础》Redis(RemoteDictionaryServer)是一个开源的、基于内存的键值对(Key-Value)存储系统,它通常用作数据库、缓存和消息代理,这篇文章... 目录1. Redis 简介2. 前提条件3. 安装 python Redis 客户端库4. 连接到 Re

Redis迷你版微信抢红包实战

《Redis迷你版微信抢红包实战》本文主要介绍了Redis迷你版微信抢红包实战... 目录1 思路分析1.1hCckRX 流程1.2 注意点①拆红包:二倍均值算法②发红包:list③抢红包&记录:hset2 代码实现2.1 拆红包splitRedPacket2.2 发红包sendRedPacket2.3 抢

Golang实现Redis分布式锁(Lua脚本+可重入+自动续期)

《Golang实现Redis分布式锁(Lua脚本+可重入+自动续期)》本文主要介绍了Golang分布式锁实现,采用Redis+Lua脚本确保原子性,持可重入和自动续期,用于防止超卖及重复下单,具有一定... 目录1 概念应用场景分布式锁必备特性2 思路分析宕机与过期防止误删keyLua保证原子性可重入锁自动

JSR-107缓存规范介绍

《JSR-107缓存规范介绍》JSR是JavaSpecificationRequests的缩写,意思是Java规范提案,下面给大家介绍JSR-107缓存规范的相关知识,感兴趣的朋友一起看看吧... 目录1.什么是jsR-1072.应用调用缓存图示3.JSR-107规范使用4.Spring 缓存机制缓存是每一