python可视化plotly 图例(legend)设置大全,值得收藏!

2023-12-07 15:28

本文主要是介绍python可视化plotly 图例(legend)设置大全,值得收藏!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 一、图例(legend)
    • 二、update\_layout(legend={}) 相关参数及示例
      • 关于Python技术储备
        • 一、Python所有方向的学习路线
        • 二、Python基础学习视频
        • 三、精品Python学习书籍
        • 四、Python工具包+项目源码合集
        • ①Python工具包
        • ②Python实战案例
        • ③Python小游戏源码
        • 五、面试资料
        • 六、Python兼职渠道


一、图例(legend)

import plotly.io as pio
import plotly.express as px
import plotly.graph\_objects as go
from plotly.subplots import make\_subplots
import pandas as pd
import numpy as np# 设置plotly默认主题
pio.templates.default = 'plotly\_white'# 设置pandas打印时显示所有列
pd.set\_option('display.max\_columns', None)

二、update_layout(legend={}) 相关参数及示例

官方文档:https://plotly.com/python/reference/layout/#layout-showlegend

官方示例:https://plotly.com/python/legend/

  • showlegend:是否显示图例,以下任一种情况发生时,该参数默认值为 True:1. 两个及两个以上的 trace 2. 有饼图3. 有一个 trace 显式指定 showlegend=True
  • legend:图例相关设置,字典类型,可取属性如下:
    • bgcolor:设置图例的背景颜色
    • bordercolor:设置图例边框的颜色
    • borderwidth:设置图例边框的宽度
    • font:设置图例条目的文本字体,字典类型,可取属性如下:
    • color:字体颜色
    • family:字体,字符串,可以为 Arial、Balto、Courier New、Droid Sans、Droid Serif、Droid Sans Mono、Gravitas One、Old Standard TT、Open Sans、Overpass、PT Sans Narrow、Raleway、Times New Roman
    • size:字体大小
  • orientation:设置图例的方向。‘v’(默认值)表示竖直显示图例、'h’表示水平显示图例
  • title:设置图例的标题,字典类型,可取属性如下:

font:设置图例条目的文本字体,字典类型,可取属性如下:

  • color:字体颜色
  • family:字体,字符串,可以为 Arial、Balto、Courier New、Droid Sans、Droid Serif、Droid Sans Mono、Gravitas One、Old Standard TT、Open Sans、Overpass、PT Sans Narrow、Raleway、Times New Roman
  • size:字体大小

side:设置图例标题相对于条目的位置。当 orientation=‘v’ 时默认为 ‘top’、当 orientation='h’时默认为 ‘left’、当为 'top left’时可用于扩展图例的面积
text:设置图例标题

  • grouptitlefont:设置图例组名的文本字体,字典类型,可取属性如下:
    • color:字体颜色
    • family:字体,字符串,可以为 Arial、Balto、Courier New、Droid Sans、Droid Serif、Droid Sans Mono、Gravitas One、Old Standard TT、Open Sans、Overpass、PT Sans Narrow、Raleway、Times New Roman
    • size:字体大小
  • itemsizing:设置图例条目的符号是否跟其 ‘trace’ 有关,如果为 ‘constant’,则所有条目的符号大小一致。
    • 可取 ‘trace’、 ‘constant’
  • itemwidth:设置条目的宽度(除 title 以外的部分)
    • 大于等于30的浮点数,默认值为30
  • tracegroupgap:设置图例组之间的间隔
    • 大于等于0的浮点数,默认值为10

traceorder:设置图例条目的顺序。如果为 ‘normal’,条目将从上到下按照输入数据的顺序排列;如果为 ‘reversed’,则按照输入数据的逆序排列;如果为 ‘grouped’,条目按照组顺序显示(如果 trace 中的legendgroup 设定了);如果为 ‘grouped+reversed’,则与 'grouped’的顺序相反
valign:设置条目符号和对应文本的竖直对齐方式。
可取 ‘middle’(默认值)、‘top’、‘bottom’

df = px.data.gapminder().query("year==2007")
fig = px.scatter(df, x="gdpPercap", y="lifeExp", color="continent",size="pop", size\_max=45, log\_x=True)fig.update\_layout(legend=dict(yanchor="top",y=0.99,xanchor="left",x=0.01
))fig.write\_image('../pic/legend\_1.png', scale=2)
fig.show()

df = px.data.gapminder().query("year==2007")
fig = px.scatter(df, x="gdpPercap", y="lifeExp", color="continent",size="pop", size\_max=45, log\_x=True)fig.update\_layout(legend=dict(orientation="h",yanchor="bottom",y=1.02,xanchor="center",x=0.5,title\_text=''
))fig.write\_image('../pic/legend\_2.png', scale=2)
fig.show()

df = px.data.gapminder().query("year==2007")
fig = px.scatter(df, x="gdpPercap", y="lifeExp", color="continent",size="pop", size\_max=45, log\_x=True)fig.update\_layout(legend=dict(x=0,y=1,traceorder="reversed",title\_font\_family="Times New Roman",font=dict(family="Courier",size=12,color="black"),bgcolor="LightSteelBlue",bordercolor="Black",borderwidth=2)
)fig.write\_image('../pic/legend\_3.png', scale=2)
fig.show()

fig = go.Figure()# 使用 name 参数指定条目文本,legendrank 指定顺序
fig.add\_trace(go.Bar(name="fourth", x=\["a", "b"\], y=\[2,1\], legendrank=4))
fig.add\_trace(go.Bar(name="second", x=\["a", "b"\], y=\[2,1\], legendrank=2))
fig.add\_trace(go.Bar(name="first", x=\["a", "b"\], y=\[1,2\], legendrank=1))
fig.add\_trace(go.Bar(name="third", x=\["a", "b"\], y=\[1,2\], legendrank=3))fig.write\_image('../pic/legend\_4.png', scale=2)
fig.show()

fig = go.Figure()fig.add\_trace(go.Scatter(x=\[1, 2, 3\],y=\[2, 1, 3\],legendgroup="group",  # this can be any string, not just "group"legendgrouptitle\_text="First Group Title",name="first legend group",mode="markers",marker=dict(color="Crimson", size=10)
))fig.add\_trace(go.Scatter(x=\[1, 2, 3\],y=\[2, 2, 2\],legendgroup="group",name="first legend group - average",mode="lines",line=dict(color="Crimson")
))fig.add\_trace(go.Scatter(x=\[1, 2, 3\],y=\[4, 9, 2\],legendgroup="group2",legendgrouptitle\_text="Second Group Title",name="second legend group",mode="markers",marker=dict(color="MediumPurple", size=10)
))fig.add\_trace(go.Scatter(x=\[1, 2, 3\],y=\[5, 5, 5\],legendgroup="group2",name="second legend group - average",mode="lines",line=dict(color="MediumPurple")
))fig.update\_layout(title="Try Clicking on the Legend Items!")fig.write\_image('../pic/legend\_5.png', scale=2)
fig.show()

fig = go.Figure()fig.add\_trace(go.Scatter(x=\[1, 2, 3, 4, 5\],y=\[1, 2, 3, 4, 5\],
))fig.add\_trace(go.Scatter(x=\[1, 2, 3, 4, 5\],y=\[5, 4, 3, 2, 1\],visible='legendonly'
))fig.write\_image('../pic/legend\_6.png', scale=2)
fig.show()

fig = go.Figure()fig.add\_trace(go.Scatter(x=\[1, 2, 3, 4, 5\],y=\[1, 2, 3, 4, 5\],showlegend=False
))fig.add\_trace(go.Scatter(x=\[1, 2, 3, 4, 5\],y=\[5, 4, 3, 2, 1\],
))fig.update\_layout(showlegend=True)fig.write\_image('../pic/legend\_7.png', scale=2)
fig.show()

fig = go.Figure()fig.add\_trace(go.Scatter(x=\[1, 2, 3, 4, 5\],y=\[1, 2, 3, 4, 5\],mode='markers',marker={'size':10}
))fig.add\_trace(go.Scatter(x=\[1, 2, 3, 4, 5\],y=\[5, 4, 3, 2, 1\],mode='markers',marker={'size':100}
))fig.update\_layout(legend= {'itemsizing': 'trace'})fig.write\_image('../pic/legend\_8.png', scale=2)
fig.show()


关于Python技术储备

学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后给大家分享一份全套的 Python 学习资料,希望提供给想学习 Python 的小伙伴们一点帮助!

保存图片微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

一、Python所有方向的学习路线

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
在这里插入图片描述

二、Python基础学习视频

② 路线对应学习视频

还有很多适合0基础入门的学习视频,有了这些视频,轻轻松松上手Python~在这里插入图片描述
在这里插入图片描述

③练习题

每节视频课后,都有对应的练习题哦,可以检验学习成果哈哈!
在这里插入图片描述
因篇幅有限,仅展示部分资料

三、精品Python学习书籍

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述

四、Python工具包+项目源码合集
①Python工具包

学习Python常用的开发软件都在这里了!每个都有详细的安装教程,保证你可以安装成功哦!
在这里插入图片描述

②Python实战案例

光学理论是没用的,要学会跟着一起敲代码,动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。100+实战案例源码等你来拿!
在这里插入图片描述

③Python小游戏源码

如果觉得上面的实战案例有点枯燥,可以试试自己用Python编写小游戏,让你的学习过程中增添一点趣味!
在这里插入图片描述

五、面试资料

我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
在这里插入图片描述
在这里插入图片描述

六、Python兼职渠道

而且学会Python以后,还可以在各大兼职平台接单赚钱,各种兼职渠道+兼职注意事项+如何和客户沟通,我都整理成文档了。
在这里插入图片描述
在这里插入图片描述
这份完整版的Python全套学习资料已经上传CSDN,朋友们如果需要可以保存图片微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

这篇关于python可视化plotly 图例(legend)设置大全,值得收藏!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/466365

相关文章

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

基于Python打造一个智能单词管理神器

《基于Python打造一个智能单词管理神器》这篇文章主要为大家详细介绍了如何使用Python打造一个智能单词管理神器,从查询到导出的一站式解决,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 项目概述:为什么需要这个工具2. 环境搭建与快速入门2.1 环境要求2.2 首次运行配置3. 核心功能使用指

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

利用Python打造一个Excel记账模板

《利用Python打造一个Excel记账模板》这篇文章主要为大家详细介绍了如何使用Python打造一个超实用的Excel记账模板,可以帮助大家高效管理财务,迈向财富自由之路,感兴趣的小伙伴快跟随小编一... 目录设置预算百分比超支标红预警记账模板功能介绍基础记账预算管理可视化分析摸鱼时间理财法碎片时间利用财

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

使用Python和Pyecharts创建交互式地图

《使用Python和Pyecharts创建交互式地图》在数据可视化领域,创建交互式地图是一种强大的方式,可以使受众能够以引人入胜且信息丰富的方式探索地理数据,下面我们看看如何使用Python和Pyec... 目录简介Pyecharts 简介创建上海地图代码说明运行结果总结简介在数据可视化领域,创建交互式地