python可视化plotly 图例(legend)设置大全,值得收藏!

2023-12-07 15:28

本文主要是介绍python可视化plotly 图例(legend)设置大全,值得收藏!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 一、图例(legend)
    • 二、update\_layout(legend={}) 相关参数及示例
      • 关于Python技术储备
        • 一、Python所有方向的学习路线
        • 二、Python基础学习视频
        • 三、精品Python学习书籍
        • 四、Python工具包+项目源码合集
        • ①Python工具包
        • ②Python实战案例
        • ③Python小游戏源码
        • 五、面试资料
        • 六、Python兼职渠道


一、图例(legend)

import plotly.io as pio
import plotly.express as px
import plotly.graph\_objects as go
from plotly.subplots import make\_subplots
import pandas as pd
import numpy as np# 设置plotly默认主题
pio.templates.default = 'plotly\_white'# 设置pandas打印时显示所有列
pd.set\_option('display.max\_columns', None)

二、update_layout(legend={}) 相关参数及示例

官方文档:https://plotly.com/python/reference/layout/#layout-showlegend

官方示例:https://plotly.com/python/legend/

  • showlegend:是否显示图例,以下任一种情况发生时,该参数默认值为 True:1. 两个及两个以上的 trace 2. 有饼图3. 有一个 trace 显式指定 showlegend=True
  • legend:图例相关设置,字典类型,可取属性如下:
    • bgcolor:设置图例的背景颜色
    • bordercolor:设置图例边框的颜色
    • borderwidth:设置图例边框的宽度
    • font:设置图例条目的文本字体,字典类型,可取属性如下:
    • color:字体颜色
    • family:字体,字符串,可以为 Arial、Balto、Courier New、Droid Sans、Droid Serif、Droid Sans Mono、Gravitas One、Old Standard TT、Open Sans、Overpass、PT Sans Narrow、Raleway、Times New Roman
    • size:字体大小
  • orientation:设置图例的方向。‘v’(默认值)表示竖直显示图例、'h’表示水平显示图例
  • title:设置图例的标题,字典类型,可取属性如下:

font:设置图例条目的文本字体,字典类型,可取属性如下:

  • color:字体颜色
  • family:字体,字符串,可以为 Arial、Balto、Courier New、Droid Sans、Droid Serif、Droid Sans Mono、Gravitas One、Old Standard TT、Open Sans、Overpass、PT Sans Narrow、Raleway、Times New Roman
  • size:字体大小

side:设置图例标题相对于条目的位置。当 orientation=‘v’ 时默认为 ‘top’、当 orientation='h’时默认为 ‘left’、当为 'top left’时可用于扩展图例的面积
text:设置图例标题

  • grouptitlefont:设置图例组名的文本字体,字典类型,可取属性如下:
    • color:字体颜色
    • family:字体,字符串,可以为 Arial、Balto、Courier New、Droid Sans、Droid Serif、Droid Sans Mono、Gravitas One、Old Standard TT、Open Sans、Overpass、PT Sans Narrow、Raleway、Times New Roman
    • size:字体大小
  • itemsizing:设置图例条目的符号是否跟其 ‘trace’ 有关,如果为 ‘constant’,则所有条目的符号大小一致。
    • 可取 ‘trace’、 ‘constant’
  • itemwidth:设置条目的宽度(除 title 以外的部分)
    • 大于等于30的浮点数,默认值为30
  • tracegroupgap:设置图例组之间的间隔
    • 大于等于0的浮点数,默认值为10

traceorder:设置图例条目的顺序。如果为 ‘normal’,条目将从上到下按照输入数据的顺序排列;如果为 ‘reversed’,则按照输入数据的逆序排列;如果为 ‘grouped’,条目按照组顺序显示(如果 trace 中的legendgroup 设定了);如果为 ‘grouped+reversed’,则与 'grouped’的顺序相反
valign:设置条目符号和对应文本的竖直对齐方式。
可取 ‘middle’(默认值)、‘top’、‘bottom’

df = px.data.gapminder().query("year==2007")
fig = px.scatter(df, x="gdpPercap", y="lifeExp", color="continent",size="pop", size\_max=45, log\_x=True)fig.update\_layout(legend=dict(yanchor="top",y=0.99,xanchor="left",x=0.01
))fig.write\_image('../pic/legend\_1.png', scale=2)
fig.show()

df = px.data.gapminder().query("year==2007")
fig = px.scatter(df, x="gdpPercap", y="lifeExp", color="continent",size="pop", size\_max=45, log\_x=True)fig.update\_layout(legend=dict(orientation="h",yanchor="bottom",y=1.02,xanchor="center",x=0.5,title\_text=''
))fig.write\_image('../pic/legend\_2.png', scale=2)
fig.show()

df = px.data.gapminder().query("year==2007")
fig = px.scatter(df, x="gdpPercap", y="lifeExp", color="continent",size="pop", size\_max=45, log\_x=True)fig.update\_layout(legend=dict(x=0,y=1,traceorder="reversed",title\_font\_family="Times New Roman",font=dict(family="Courier",size=12,color="black"),bgcolor="LightSteelBlue",bordercolor="Black",borderwidth=2)
)fig.write\_image('../pic/legend\_3.png', scale=2)
fig.show()

fig = go.Figure()# 使用 name 参数指定条目文本,legendrank 指定顺序
fig.add\_trace(go.Bar(name="fourth", x=\["a", "b"\], y=\[2,1\], legendrank=4))
fig.add\_trace(go.Bar(name="second", x=\["a", "b"\], y=\[2,1\], legendrank=2))
fig.add\_trace(go.Bar(name="first", x=\["a", "b"\], y=\[1,2\], legendrank=1))
fig.add\_trace(go.Bar(name="third", x=\["a", "b"\], y=\[1,2\], legendrank=3))fig.write\_image('../pic/legend\_4.png', scale=2)
fig.show()

fig = go.Figure()fig.add\_trace(go.Scatter(x=\[1, 2, 3\],y=\[2, 1, 3\],legendgroup="group",  # this can be any string, not just "group"legendgrouptitle\_text="First Group Title",name="first legend group",mode="markers",marker=dict(color="Crimson", size=10)
))fig.add\_trace(go.Scatter(x=\[1, 2, 3\],y=\[2, 2, 2\],legendgroup="group",name="first legend group - average",mode="lines",line=dict(color="Crimson")
))fig.add\_trace(go.Scatter(x=\[1, 2, 3\],y=\[4, 9, 2\],legendgroup="group2",legendgrouptitle\_text="Second Group Title",name="second legend group",mode="markers",marker=dict(color="MediumPurple", size=10)
))fig.add\_trace(go.Scatter(x=\[1, 2, 3\],y=\[5, 5, 5\],legendgroup="group2",name="second legend group - average",mode="lines",line=dict(color="MediumPurple")
))fig.update\_layout(title="Try Clicking on the Legend Items!")fig.write\_image('../pic/legend\_5.png', scale=2)
fig.show()

fig = go.Figure()fig.add\_trace(go.Scatter(x=\[1, 2, 3, 4, 5\],y=\[1, 2, 3, 4, 5\],
))fig.add\_trace(go.Scatter(x=\[1, 2, 3, 4, 5\],y=\[5, 4, 3, 2, 1\],visible='legendonly'
))fig.write\_image('../pic/legend\_6.png', scale=2)
fig.show()

fig = go.Figure()fig.add\_trace(go.Scatter(x=\[1, 2, 3, 4, 5\],y=\[1, 2, 3, 4, 5\],showlegend=False
))fig.add\_trace(go.Scatter(x=\[1, 2, 3, 4, 5\],y=\[5, 4, 3, 2, 1\],
))fig.update\_layout(showlegend=True)fig.write\_image('../pic/legend\_7.png', scale=2)
fig.show()

fig = go.Figure()fig.add\_trace(go.Scatter(x=\[1, 2, 3, 4, 5\],y=\[1, 2, 3, 4, 5\],mode='markers',marker={'size':10}
))fig.add\_trace(go.Scatter(x=\[1, 2, 3, 4, 5\],y=\[5, 4, 3, 2, 1\],mode='markers',marker={'size':100}
))fig.update\_layout(legend= {'itemsizing': 'trace'})fig.write\_image('../pic/legend\_8.png', scale=2)
fig.show()


关于Python技术储备

学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后给大家分享一份全套的 Python 学习资料,希望提供给想学习 Python 的小伙伴们一点帮助!

保存图片微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

一、Python所有方向的学习路线

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
在这里插入图片描述

二、Python基础学习视频

② 路线对应学习视频

还有很多适合0基础入门的学习视频,有了这些视频,轻轻松松上手Python~在这里插入图片描述
在这里插入图片描述

③练习题

每节视频课后,都有对应的练习题哦,可以检验学习成果哈哈!
在这里插入图片描述
因篇幅有限,仅展示部分资料

三、精品Python学习书籍

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述

四、Python工具包+项目源码合集
①Python工具包

学习Python常用的开发软件都在这里了!每个都有详细的安装教程,保证你可以安装成功哦!
在这里插入图片描述

②Python实战案例

光学理论是没用的,要学会跟着一起敲代码,动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。100+实战案例源码等你来拿!
在这里插入图片描述

③Python小游戏源码

如果觉得上面的实战案例有点枯燥,可以试试自己用Python编写小游戏,让你的学习过程中增添一点趣味!
在这里插入图片描述

五、面试资料

我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
在这里插入图片描述
在这里插入图片描述

六、Python兼职渠道

而且学会Python以后,还可以在各大兼职平台接单赚钱,各种兼职渠道+兼职注意事项+如何和客户沟通,我都整理成文档了。
在这里插入图片描述
在这里插入图片描述
这份完整版的Python全套学习资料已经上传CSDN,朋友们如果需要可以保存图片微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

这篇关于python可视化plotly 图例(legend)设置大全,值得收藏!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/466365

相关文章

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e