台湾国立大学郭彦甫Matlab教程笔记(14)polynomial differentiation多项式微分

本文主要是介绍台湾国立大学郭彦甫Matlab教程笔记(14)polynomial differentiation多项式微分,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

台湾国立大学郭彦甫Matlab教程笔记(14)

today:
polynomial differentiation and integration多项式微分与积分
numerical differentiation and integration数值微分与积分

Differentiation微分

1.the derivative of a function f(x) is written as
notation as follow
在这里插入图片描述

2.the rate of the change in the function f(x) with respect to x函数的变化率随着自变量x的变化而变化
3geometrically , f’(x0) represents the coefficient of the line tangent to the curve in the point x0

Polynomial Differentiation多项式微分

多项式的表示
在这里插入图片描述

MATLAB中多项式如何表示?

representing Polynomials in MATLAB
1.polynomials were represented as row vectors作为一个行向量
举例:
在这里插入图片描述
to enter this polynomial into MATLAB ,use
p=[1,0, -2,-5];
我们关注的是多项式的系数。把系数排列成向量。

如何显示一个多项式的数值?

values of polynomials: polyval()
举例:
在这里插入图片描述
这个多项式在matlab绘制出来的结果如下:
在这里插入图片描述
例程:

a=[9,-5,3,7];%多项式的系数
x=-2:0.01:5;%定义域
f=polyval(a,x);%第一个参数是多项式的系数,第二个是自变量
plot(x,f,'linewidth',2);%画线+线宽设置
xlabel('x');ylabel('y');%坐标轴
set(gca,'fontsize',14);%设置字体
legend("f=9x^3-5x^2+3x+7");%函数名称

这个polyval函数的使用:f=polyval(a,x);%第一个参数是多项式的系数,第二个是自变量,a是一个向量,x是定义域。

多项式的微分

polynomial differentiation :polyder()

举例:
给定下图的一元四次多项式,求它的导数(derivative)

在这里插入图片描述
解决:
首先表示出来这个polinomial p=[5 0 -2 0 1]
接着计算微分 polyder§这个polyder怎么用呢?直接把多项式的系数向量传进来即可。
代码:

p=[5 0 -2 0 1];
polyder(p)

运行结果:
在这里插入图片描述
可以看出,用matlab求微分,给出的是一个向量
在这里插入图片描述

求某一点的导数的值

需要使用polyval函数:第一个参数是多项式的系数,这里的多项式变成了导函数,第二个参数是具体的数值,自变量的值。

polyval(polyder(p),7);

执行结果是什么呢?
在这里插入图片描述

下面是作业题:

题目:画出下面多项式的图形和它的导数的图形。
给出的是一个相乘的形式,老师给的提示是用conv这个函数
在这里插入图片描述

下面是笔者找到的关于conv的官方文档

关于conv的用法,下面截取多项式乘法这一部分,可以看出conv函数传出来的就是一个向量,这个向量是两个多项式相乘之后的多项式的系数。所以,我们知道如何求这个多项式的系数了

在这里插入图片描述
我的练习:

a=[20 -7 5 10];%第一个多项式相乘之前
b=[4 12 -3];%第二个多项式相乘之前
x=-2:0.01:1;%自变量范围
A=conv(a,b);%计算相乘之后多项式的系数
f=polyval(A,x);%多项式的值
%求导数
A1=polyder(A);%得到的是导数的系数
f1=polyval(A1,x);%得到多项式的值%绘制多项式
plot(x,f,'b:',x,f1,'r-');
legend('f(x)','f''(x)');%函数标头
set(gca,'fontsize',14);%设置字体

运行结果:

在这里插入图片描述

【总结】
这篇文章介绍了matlab中计算多项式微分的几个函数。包括:polyval()和polyder()
还有conv()多项式乘法

这篇关于台湾国立大学郭彦甫Matlab教程笔记(14)polynomial differentiation多项式微分的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/466066

相关文章

Nexus安装和启动的实现教程

《Nexus安装和启动的实现教程》:本文主要介绍Nexus安装和启动的实现教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、Nexus下载二、Nexus安装和启动三、关闭Nexus总结一、Nexus下载官方下载链接:DownloadWindows系统根

CnPlugin是PL/SQL Developer工具插件使用教程

《CnPlugin是PL/SQLDeveloper工具插件使用教程》:本文主要介绍CnPlugin是PL/SQLDeveloper工具插件使用教程,具有很好的参考价值,希望对大家有所帮助,如有错... 目录PL/SQL Developer工具插件使用安装拷贝文件配置总结PL/SQL Developer工具插

Java中的登录技术保姆级详细教程

《Java中的登录技术保姆级详细教程》:本文主要介绍Java中登录技术保姆级详细教程的相关资料,在Java中我们可以使用各种技术和框架来实现这些功能,文中通过代码介绍的非常详细,需要的朋友可以参考... 目录1.登录思路2.登录标记1.会话技术2.会话跟踪1.Cookie技术2.Session技术3.令牌技

Python使用Code2flow将代码转化为流程图的操作教程

《Python使用Code2flow将代码转化为流程图的操作教程》Code2flow是一款开源工具,能够将代码自动转换为流程图,该工具对于代码审查、调试和理解大型代码库非常有用,在这篇博客中,我们将深... 目录引言1nVflRA、为什么选择 Code2flow?2、安装 Code2flow3、基本功能演示

Java Spring 中的监听器Listener详解与实战教程

《JavaSpring中的监听器Listener详解与实战教程》Spring提供了多种监听器机制,可以用于监听应用生命周期、会话生命周期和请求处理过程中的事件,:本文主要介绍JavaSprin... 目录一、监听器的作用1.1 应用生命周期管理1.2 会话管理1.3 请求处理监控二、创建监听器2.1 Ser

MySQL 安装配置超完整教程

《MySQL安装配置超完整教程》MySQL是一款广泛使用的开源关系型数据库管理系统(RDBMS),由瑞典MySQLAB公司开发,目前属于Oracle公司旗下产品,:本文主要介绍MySQL安装配置... 目录一、mysql 简介二、下载 MySQL三、安装 MySQL四、配置环境变量五、配置 MySQL5.1

MQTT SpringBoot整合实战教程

《MQTTSpringBoot整合实战教程》:本文主要介绍MQTTSpringBoot整合实战教程,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录MQTT-SpringBoot创建简单 SpringBoot 项目导入必须依赖增加MQTT相关配置编写

在Java中基于Geotools对PostGIS数据库的空间查询实践教程

《在Java中基于Geotools对PostGIS数据库的空间查询实践教程》本文将深入探讨这一实践,从连接配置到复杂空间查询操作,包括点查询、区域范围查询以及空间关系判断等,全方位展示如何在Java环... 目录前言一、相关技术背景介绍1、评价对象AOI2、数据处理流程二、对AOI空间范围查询实践1、空间查

Logback在SpringBoot中的详细配置教程

《Logback在SpringBoot中的详细配置教程》SpringBoot默认会加载classpath下的logback-spring.xml(推荐)或logback.xml作为Logback的配置... 目录1. Logback 配置文件2. 基础配置示例3. 关键配置项说明Appender(日志输出器

Kali Linux安装实现教程(亲测有效)

《KaliLinux安装实现教程(亲测有效)》:本文主要介绍KaliLinux安装实现教程(亲测有效),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、下载二、安装总结一、下载1、点http://www.chinasem.cn击链接 Get Kali | Kal