视频相似度对比 python opencv sift flann

2023-12-07 11:36

本文主要是介绍视频相似度对比 python opencv sift flann,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 提取SIFT特征的代码,返回关键点kp及特征描述符des

def SIFT(frame):# 创建SIFT特征提取器sift = cv2.xfeatures2d.SIFT_create()# 提取SIFT特征kp, des = sift.detectAndCompute(frame, None)return kp, des

这行代码是使用SIFT(Scale-Invariant Feature Transform)算法在图像中检测关键点并计算对应的特征描述符。

在这行代码中,sift是一个SIFT特征提取器的实例,detectAndCompute是它的一个方法,用于在给定的图像中检测关键点并计算特征描述符。

这个方法有两个参数:第一个参数是输入的图像,第二个参数是一个掩码,用于指定在哪些地方检测关键点。在这个例子中,我们没有使用掩码,所以第二个参数是None

这个方法返回两个值:kpdes

  • kp是一个列表,包含了在图像中检测到的所有关键点。每个关键点是一个KeyPoint对象,包含了关键点的位置、大小、角度、响应度等信息。

  • des是一个NumPy数组,包含了每个关键点的特征描述符。每个特征描述符是一个128维的向量,可以用于比较不同关键点(或来自不同图像的关键点)的相似性。

总的来说,这行代码的作用就是使用SIFT算法提取图像的关键点和特征描述符,这些关键点和特征描述符可以用于图像匹配、物体检测、图像识别等任务。


特征描述匹配算法

FlannBasedMatcher 是 OpenCV 中的一个特征匹配方法,它使用了近似最近邻搜索算法(Approximate Nearest Neighbors,简称 FLANN)来寻找特征之间的匹配。这种方法的主要优点是它在大规模数据集上的性能非常好,尤其是在处理高维特征(例如 SIFT 或 SURF)时。

FLANN 是一种优化的最近邻搜索算法,它可以在高维空间中快速找到查询点的最近邻。传统的最近邻搜索算法(例如暴力搜索)在高维空间中的性能往往很差,因为它们需要对每一个可能的匹配进行计算,这在处理大规模数据集时会变得非常慢。FLANN 通过使用一种叫做 k-d 树的数据结构,以及一种叫做优先级搜索的策略,来大大加快搜索速度。

FLANN 的另一个优点是它可以自动选择最优的搜索算法和参数,这使得它可以在各种不同的数据集和特征类型上都有很好的性能。然而,这也意味着 FLANN 可能需要一些时间来调整这些参数,因此在小规模数据集上,FLANN 可能不如其他更简单的方法(例如暴力搜索或基于哈希的方法)快。

总的来说,FlannBasedMatcher 的主要优势是它在处理大规模、高维特征数据集时的性能和效率。然而,这也意味着它可能不适合所有的应用场景,尤其是在数据集较小或特征维度较低的情况下。

# 近似匹配
# 近似最近邻搜索算法来找到最佳匹配
def FlannMatcher(des1, des2):# 创建FLANN匹配器FLANN_INDEX_KDTREE = 1index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)  # KD树索引 树的数量5search_params = dict(checks=50)  # 回溯查找的次数flann = cv2.FlannBasedMatcher(index_params, search_params)# 使用FlannBasedMatcher比较特征描述符matches = flann.knnMatch(des1, des2, k=2)# 应用比例测试(ratio test)来选择好的匹配good_matches = []for m, n in matches:if m.distance < 0.7 * n.distance:good_matches.append([m])return good_matches

根据视频流取帧进行特征对比
def process(path1, path2):# 读取视频cap1 = cv2.VideoCapture(path1)cap2 = cv2.VideoCapture(path2)index = 0# matches_over_time 根据时序得到特征匹配结果# scores 记录每个匹配的得分情况 根据 最佳匹配/提取特征数 计算matches_over_time, scores = [], []while True:index = index + 1# 读取第一帧ret1, frame1 = cap1.read()ret2, frame2 = cap2.read()if not ret1:breakif not ret2:breakif index % 25 != 0:  # 每秒一帧进行采样continue# 如果成功读取帧if ret1 and ret2:kp1, des1 = SIFT(frame1)kp2, des2 = SIFT(frame2)good_matches = FlannMatcher(des1, des2)matches_over_time.append(good_matches)# 计算得分score = len(good_matches) / min(des1.shape[0], des2.shape[0])scores.append(score)# 释放资源cap1.release()cap2.release()return matches_over_time, scores

# 主函数调用
if __name__ == '__main__':path1 = 'video_base.mp4'path2 = 'video_origin.mp4't1 = int(time.time() * 1000)matches, scores = process(path1, path2)t2 = int(time.time() * 1000)print(f"用时 {(t2-t1)/1000.0}s")total_score = sum(scores) / len(scores)print(f"相似度得分 {round(total_score, 7)}")# cv2.destroyAllWindows()

这篇关于视频相似度对比 python opencv sift flann的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/465710

相关文章

基于Python开发一个图像水印批量添加工具

《基于Python开发一个图像水印批量添加工具》在当今数字化内容爆炸式增长的时代,图像版权保护已成为创作者和企业的核心需求,本方案将详细介绍一个基于PythonPIL库的工业级图像水印解决方案,有需要... 目录一、系统架构设计1.1 整体处理流程1.2 类结构设计(扩展版本)二、核心算法深入解析2.1 自

从入门到进阶讲解Python自动化Playwright实战指南

《从入门到进阶讲解Python自动化Playwright实战指南》Playwright是针对Python语言的纯自动化工具,它可以通过单个API自动执行Chromium,Firefox和WebKit... 目录Playwright 简介核心优势安装步骤观点与案例结合Playwright 核心功能从零开始学习

Python 字典 (Dictionary)使用详解

《Python字典(Dictionary)使用详解》字典是python中最重要,最常用的数据结构之一,它提供了高效的键值对存储和查找能力,:本文主要介绍Python字典(Dictionary)... 目录字典1.基本特性2.创建字典3.访问元素4.修改字典5.删除元素6.字典遍历7.字典的高级特性默认字典

Python自动化批量重命名与整理文件系统

《Python自动化批量重命名与整理文件系统》这篇文章主要为大家详细介绍了如何使用Python实现一个强大的文件批量重命名与整理工具,帮助开发者自动化这一繁琐过程,有需要的小伙伴可以了解下... 目录简介环境准备项目功能概述代码详细解析1. 导入必要的库2. 配置参数设置3. 创建日志系统4. 安全文件名处

使用Python构建一个高效的日志处理系统

《使用Python构建一个高效的日志处理系统》这篇文章主要为大家详细讲解了如何使用Python开发一个专业的日志分析工具,能够自动化处理、分析和可视化各类日志文件,大幅提升运维效率,需要的可以了解下... 目录环境准备工具功能概述完整代码实现代码深度解析1. 类设计与初始化2. 日志解析核心逻辑3. 文件处

SpringBoot中六种批量更新Mysql的方式效率对比分析

《SpringBoot中六种批量更新Mysql的方式效率对比分析》文章比较了MySQL大数据量批量更新的多种方法,指出REPLACEINTO和ONDUPLICATEKEY效率最高但存在数据风险,MyB... 目录效率比较测试结构数据库初始化测试数据批量修改方案第一种 for第二种 case when第三种

python生成随机唯一id的几种实现方法

《python生成随机唯一id的几种实现方法》在Python中生成随机唯一ID有多种方法,根据不同的需求场景可以选择最适合的方案,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习... 目录方法 1:使用 UUID 模块(推荐)方法 2:使用 Secrets 模块(安全敏感场景)方法

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、