Flink基础之DataStream API

2023-12-07 10:20
文章标签 基础 api flink datastream

本文主要是介绍Flink基础之DataStream API,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

流的合并

  1. union联合:被unioin的流中的数据类型必须一致
  2. connect连接:合并的两条流的数据类型可以不一致
    • connec后,得到的是ConnectedStreams
    • 合并后需要根据数据流是否经过keyby分区
      • coConnect: 将两条数据流合并为同一数据类型
      • keyedConnect
public class Flink09_UnionConnectStream {public static void main(String[] args) {//1.创建运行环境StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();//默认是最大并行度env.setParallelism(1);DataStreamSource<Integer> ds1 = env.fromElements(1, 2, 3, 4, 5, 6, 7);DataStreamSource<Integer> ds2 = env.fromElements(8, 9);DataStreamSource<String> ds3 = env.fromElements("a", "b", "c");DataStream<Integer> unionDs = ds1.union(ds2);unionDs.print();//connectConnectedStreams<Integer, String> connectDs = ds1.connect(ds3);//处理connectDs.process(new CoProcessFunction<Integer, String, String>() {@Overridepublic void processElement1(Integer value, CoProcessFunction<Integer, String, String>.Context ctx, Collector<String> out) throws Exception {out.collect(value.toString());}@Overridepublic void processElement2(String value, CoProcessFunction<Integer, String, String>.Context ctx, Collector<String> out) throws Exception {out.collect(value.toUpperCase());}}).print("connect");try {env.execute();} catch (Exception e) {throw new RuntimeException(e);}}
}

Sink输出算子

目前所使用的大多数Sink, 都是基于2PC的方式来保证状态精确一次性。2PC 即 two face commit, 两阶段提交,该机制的实现必须要开启Flink的检查点。

  1. FileSink:fileSink = FileSink.<数据流泛型>forRowFormat(输出路径, 数据流编码器)
    • 文件滚动策略 .withRollingPolicy().builder()
      • 文件多大滚动.withMaxPartSize(MemorySize.parse(“10m”))
      • 多长时间滚动一次 .withRolloverInterval(Duration.ofSeconds(10))
      • 多久不活跃滚动 .withInactivityInterval(Duration.ofSeconds(5))
    • 目录滚动策略:一般设置为按照天或者小时或者其他时间间隔
    • 文件输出配置:可以设置输出文件的前缀和后缀
public class Flink01_FileSink {public static void main(String[] args) {//1.创建运行环境StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.enableCheckpointing(2000);//默认是最大并行度env.setParallelism(1);DataStreamSource<Event> ds = Flink06_EventSource.getEventSource(env);//FileSinkFileSink<String> stringFileSink = FileSink.<String>forRowFormat(new Path("output"),new SimpleStringEncoder<>()).withRollingPolicy(//文件滚动策略DefaultRollingPolicy.builder().withMaxPartSize(MemorySize.parse("10m"))//文件多大滚动.withRolloverInterval(Duration.ofSeconds(10))//多久滚动.withInactivityInterval(Duration.ofSeconds(5))//多久不活跃滚动.build()).withBucketAssigner(//目录滚动策略new DateTimeBucketAssigner<>("yyyy-MM-dd HH-mm")).withBucketCheckInterval(1000L)//检查的间隔.withOutputFileConfig(OutputFileConfig.builder().withPartPrefix("atguigu").withPartSuffix(".log").build()).build();ds.map(JSON::toJSONString).sinkTo(stringFileSink);try {env.execute();} catch (Exception e) {throw new RuntimeException(e);}}
}
  1. Kafka Sink(重点)
    • 生产者对象:KafkaProducer
    • Kafka生产者分区策略:
      • 如果明确指定分区号,直接用
      • 如果没有指定分区号,但是Record中带了key,就按照key的hash值对分区数取余得到分区号
      • 如果没有指定相关分区号,使用粘性分区策略
    • 生产者相关配置
      • key.serializer : key的序列化器
      • value.serializer: value的序列化器
      • bootstrap.servers: 集群位置
      • retries: 重试次数
      • batch.size 批次大小
      • linger.ms 批次超时时间
      • acks 应答级别
      • transaction.id 事务ID
    • Shell中开启Kafka消费者的命令:kafka-console-consumer.sh --bootstrap-server hadoop102:9092 --topic first
public class Flink02_KafkaSink {public static void main(String[] args) {//1.创建运行环境StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();//默认是最大并行度env.setParallelism(1);//开启检查点env.enableCheckpointing(5000);DataStreamSource<Event> ds = Flink06_EventSource.getEventSource(env);//KafkaSinkKafkaSink<String> kafkaSink = KafkaSink.<String>builder().setBootstrapServers("hadoop102:9092,hadoop103:9092").setRecordSerializer(KafkaRecordSerializationSchema.<String>builder().setTopic("first").setValueSerializationSchema(new SimpleStringSchema()).build())//语义//AT_LEAST_ONCE:至少一次,表示数据可能重复,需要考虑去重操作//EXACTLY_ONCE:精确一次//kafka transaction timeout is larger than broker//kafka超时时间:1H//broker超时时间:15分钟//                .setDeliveryGuarantee(DeliveryGuarantee.AT_LEAST_ONCE)//数据传输的保障.setDeliveryGuarantee(DeliveryGuarantee.EXACTLY_ONCE)//数据传输的保障.setTransactionalIdPrefix("flink"+ RandomUtils.nextInt(0,100000))
//                .setProperty(ProducerConfig.RETRIES_CONFIG,"10").setProperty(ProducerConfig.TRANSACTION_TIMEOUT_CONFIG,"600000").build();ds.map(JSON::toJSONString).sinkTo(kafkaSink);//写入到kafka 生产者//shell 消费者:kafka-console-consumer.sh --bootstrap-server hadoop102:9092 --topic firsttry {env.execute();} catch (Exception e) {throw new RuntimeException(e);}}
}

为了在Shell中开启消费者更为便捷,这里写了一个小脚本,用来动态的设置主题并开启相应的Kafka消费者,脚本名称为kc.sh.

#!/bin/bash# 检查参数数量
if [ $# -lt 1 ]; thenecho "Usage: $0 <topic>"exit 1
fi# 从命令行参数获取主题
topic=$1# Kafka配置
bootstrap_server="hadoop102:9092"# 构建kafka-console-consumer命令
consumer_command="kafka-console-consumer.sh --bootstrap-server $bootstrap_server --topic $topic"# 打印消费命令
echo "Running Kafka Consumer for topic: $topic"
echo "Command: $consumer_command"# 执行消费命令
$consumer_command

这篇关于Flink基础之DataStream API的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/465500

相关文章

HTML5 getUserMedia API网页录音实现指南示例小结

《HTML5getUserMediaAPI网页录音实现指南示例小结》本教程将指导你如何利用这一API,结合WebAudioAPI,实现网页录音功能,从获取音频流到处理和保存录音,整个过程将逐步... 目录1. html5 getUserMedia API简介1.1 API概念与历史1.2 功能与优势1.3

从基础到进阶详解Pandas时间数据处理指南

《从基础到进阶详解Pandas时间数据处理指南》Pandas构建了完整的时间数据处理生态,核心由四个基础类构成,Timestamp,DatetimeIndex,Period和Timedelta,下面我... 目录1. 时间数据类型与基础操作1.1 核心时间对象体系1.2 时间数据生成技巧2. 时间索引与数据

SpringBoot整合Apache Flink的详细指南

《SpringBoot整合ApacheFlink的详细指南》这篇文章主要为大家详细介绍了SpringBoot整合ApacheFlink的详细过程,涵盖环境准备,依赖配置,代码实现及运行步骤,感兴趣的... 目录1. 背景与目标2. 环境准备2.1 开发工具2.2 技术版本3. 创建 Spring Boot

安装centos8设置基础软件仓库时出错的解决方案

《安装centos8设置基础软件仓库时出错的解决方案》:本文主要介绍安装centos8设置基础软件仓库时出错的解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录安装Centos8设置基础软件仓库时出错版本 8版本 8.2.200android4版本 javas

Spring Boot 整合 Apache Flink 的详细过程

《SpringBoot整合ApacheFlink的详细过程》ApacheFlink是一个高性能的分布式流处理框架,而SpringBoot提供了快速构建企业级应用的能力,下面给大家介绍Spri... 目录Spring Boot 整合 Apache Flink 教程一、背景与目标二、环境准备三、创建项目 & 添

Linux基础命令@grep、wc、管道符的使用详解

《Linux基础命令@grep、wc、管道符的使用详解》:本文主要介绍Linux基础命令@grep、wc、管道符的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录grep概念语法作用演示一演示二演示三,带选项 -nwc概念语法作用wc,不带选项-c,统计字节数-

python操作redis基础

《python操作redis基础》Redis(RemoteDictionaryServer)是一个开源的、基于内存的键值对(Key-Value)存储系统,它通常用作数据库、缓存和消息代理,这篇文章... 目录1. Redis 简介2. 前提条件3. 安装 python Redis 客户端库4. 连接到 Re

使用Python实现调用API获取图片存储到本地的方法

《使用Python实现调用API获取图片存储到本地的方法》开发一个自动化工具,用于从JSON数据源中提取图像ID,通过调用指定API获取未经压缩的原始图像文件,并确保下载结果与Postman等工具直接... 目录使用python实现调用API获取图片存储到本地1、项目概述2、核心功能3、环境准备4、代码实现

无法启动此程序因为计算机丢失api-ms-win-core-path-l1-1-0.dll修复方案

《无法启动此程序因为计算机丢失api-ms-win-core-path-l1-1-0.dll修复方案》:本文主要介绍了无法启动此程序,详细内容请阅读本文,希望能对你有所帮助... 在计算机使用过程中,我们经常会遇到一些错误提示,其中之一就是"api-ms-win-core-path-l1-1-0.dll丢失

SpringBoot基础框架详解

《SpringBoot基础框架详解》SpringBoot开发目的是为了简化Spring应用的创建、运行、调试和部署等,使用SpringBoot可以不用或者只需要很少的Spring配置就可以让企业项目快... 目录SpringBoot基础 – 框架介绍1.SpringBoot介绍1.1 概述1.2 核心功能2