深度学习在超分辨率重建SR领域的发展过程从SRCNN(ECCV14)-CameraSR(CVPR19)

本文主要是介绍深度学习在超分辨率重建SR领域的发展过程从SRCNN(ECCV14)-CameraSR(CVPR19),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • @[toc]
    • 帮助新手快速上路的网址和工具
    • 从2014的SRCNN到2019的CameraSR优秀论文集结
    • 实验过程中的常用MATLAB代码整理
    • SR领域期刊和会议整理

图像超分辨率重建之路的学习与经验总结。
**本文由四部分组成:(1)帮助新手快速上手的网址和工具;(2)从始至今的SR领域优秀论文整理;(3)常用的代码;(4)SR领域期刊和会议整理 **
单一图像超分辨率重建(SISR )是典型的计算机视觉问题,它的目标是从低分辨率图像中恢复出高分辨率图像。这是一个很困难的事情,因为一副低分辨图像对应多张高分辨图像, (an infinite number of HR images can get the same LR image by downsampling.)要让网络结构准确的恢复出其对应的高分辨率图片是很困难的。
目前已有大量的SISR方法被提出,包括基于插值的方法(interpolation-based methods),基于重构的方法(reconstruction-based methods)和基于学习的方法( example-based methods)。近几年,受计算机视觉任务的启发,DL在SR领域也取得了重大突破,硕果累累。从 2014年Dong等人率先提出基于卷积神经网络的超分辨率重建方法,即SRCNN,接着就出现了各种各样的基于神经网络的超分辨率重建算法。

帮助新手快速上路的网址和工具

超分科研上手常用工具

从2014的SRCNN到2019的CameraSR优秀论文集结

  • SRCNN (ECCV14)
    Depth: 3
    - 这是超分领域第一篇使用CNN的文章;
    - end-to-end的模式,image在送入网络之前就使用“双三次插值”对图片进行了上采样,让图片变大到目标大小。
    - 这样做的优点:图片在送入网络之前进行上采样,放大了。这样网络可学习的信息增加了;
    - 缺点:在上采样的过程中可能会引入噪声,这样会影响网络的性能

  • 论文SRCNN PDF

  • code(Learning a Deep Convolutional Network for Image Super-Resolution, ECCV2014)
    在这里插入图片描述

  • FSRCNN (ECCV16 )
    Depth: 8
    (1):在SRCNN的基础上进行了改进,得到了一个更加快速的参数更少的模型;网络中使用1×1卷积进行压缩,后期再使用1*1的卷积对网络进行扩增,此外还使用2个3×3的卷积代替SRCNN中的5×5的卷积,以上操作大大降低了网络参数;
    (2):网络中使用反卷积对图像进行上采样;

  • 论文FSRCNN PDF

  • 项目链接(Accelerating the Super-Resolution Convolutional Neural Network, ECCV2016)

在这里插入图片描述

  • ESPCN (CVPR16)-- 一种新的上采样方式
    Depth: 3
    亚像素卷积:本文提出了一种新的上采样方式,与以往的双三次插值,反卷积不同的是,亚像素卷积是通过通道扩增和像素点重排来实现的图像放大,比如放大r倍,则亚像素卷积层的输出必须是个长和宽都扩大r倍,整张图就放大了r倍;
    *论文
    Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network,CVPR2016
    *代码
    TensorFlow
    caffe
    亚像素卷积
  • VDSR (CVPR16)
    Depth: 20
    20层参数设置一样的卷积层,主要亮点是对网络模型进行了加深;其次提出了skip-connection;使用梯度裁剪的优化方式;网络的训练图像是使用在预处理时使用双三次插值将图片放大送入大图到网络中;
    *论文 VDSR PDF
    *项目链接(Accurate Image Super-Resolution Using Very Deep Convolutional Networks, CVPR2016)
    *caffe-VDSR
    *TensorFlow-VDSR
    *pytorch-VDSR

这篇关于深度学习在超分辨率重建SR领域的发展过程从SRCNN(ECCV14)-CameraSR(CVPR19)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/464356

相关文章

Linux线程同步/互斥过程详解

《Linux线程同步/互斥过程详解》文章讲解多线程并发访问导致竞态条件,需通过互斥锁、原子操作和条件变量实现线程安全与同步,分析死锁条件及避免方法,并介绍RAII封装技术提升资源管理效率... 目录01. 资源共享问题1.1 多线程并发访问1.2 临界区与临界资源1.3 锁的引入02. 多线程案例2.1 为

批量导入txt数据到的redis过程

《批量导入txt数据到的redis过程》用户通过将Redis命令逐行写入txt文件,利用管道模式运行客户端,成功执行批量删除以Product*匹配的Key操作,提高了数据清理效率... 目录批量导入txt数据到Redisjs把redis命令按一条 一行写到txt中管道命令运行redis客户端成功了批量删除k

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布

Win10安装Maven与环境变量配置过程

《Win10安装Maven与环境变量配置过程》本文介绍Maven的安装与配置方法,涵盖下载、环境变量设置、本地仓库及镜像配置,指导如何在IDEA中正确配置Maven,适用于Java及其他语言项目的构建... 目录Maven 是什么?一、下载二、安装三、配置环境四、验证测试五、配置本地仓库六、配置国内镜像地址

深度解析Spring Security 中的 SecurityFilterChain核心功能

《深度解析SpringSecurity中的SecurityFilterChain核心功能》SecurityFilterChain通过组件化配置、类型安全路径匹配、多链协同三大特性,重构了Spri... 目录Spring Security 中的SecurityFilterChain深度解析一、Security

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

python运用requests模拟浏览器发送请求过程

《python运用requests模拟浏览器发送请求过程》模拟浏览器请求可选用requests处理静态内容,selenium应对动态页面,playwright支持高级自动化,设置代理和超时参数,根据需... 目录使用requests库模拟浏览器请求使用selenium自动化浏览器操作使用playwright

Mysql中设计数据表的过程解析

《Mysql中设计数据表的过程解析》数据库约束通过NOTNULL、UNIQUE、DEFAULT、主键和外键等规则保障数据完整性,自动校验数据,减少人工错误,提升数据一致性和业务逻辑严谨性,本文介绍My... 目录1.引言2.NOT NULL——制定某列不可以存储NULL值2.UNIQUE——保证某一列的每一

解密SQL查询语句执行的过程

《解密SQL查询语句执行的过程》文章讲解了SQL语句的执行流程,涵盖解析、优化、执行三个核心阶段,并介绍执行计划查看方法EXPLAIN,同时提出性能优化技巧如合理使用索引、避免SELECT*、JOIN... 目录1. SQL语句的基本结构2. SQL语句的执行过程3. SQL语句的执行计划4. 常见的性能优